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Involuntary electromyographic (EMG) activity has been recorded in the 

thenar (thumb) muscles of spinal cord injured (SCI) subjects for only short time 

periods (minutes), but it is unknown if this motor unit activity is ongoing.  Longer 

duration EMG recordings can investigate the physiological significance of this 

neuromuscular activity.  Analysis of these data is complex and time consuming.   

Since no software is currently capable of classifying 24 hours of data at a single 

motor unit level, the goal of this research was to devise an algorithm to 

automatically classify motor unit potentials over 24-hours. 

 Twenty-four-hour, 2-channel thenar muscle EMG recordings were 

obtained from four different SCI subjects with cervical level injuries using a data 

logging device with custom software.  The automatic motor unit classification 

algorithm used to classify the 24-hour recordings was a procedure consisting of 

four stages that included segmentation, clustering, and motor unit template 

uniting.  All individual potentials were then classified and any superimposed 

potentials were resolved into their constituent classes.  Finally, the algorithm 

found the firing patterns for each of the stable motor unit classes. 

 The classification algorithm performance was compared to the analysis of 

a human operator and assessed in 2 ways:  Tracking global classes over the 24 
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hours and correctly classifying individual motor unit potentials as to belonging to 

particular global classes.  The algorithm was able to track an average of 13 

global classes in four 24-hour recordings with a mean accuracy of 92 %.  It was 

also able to classify individual potentials with a mean accuracy of 86% over four 

recordings, greater than the inter-rater reliability of two human operators (79%).  

The activities of the motor units tracked by the algorithm ranged from tonic firing 

to sporadic activity.  The algorithm could analyze 24 hours of data in 2-3 weeks, 

while a human operator was estimated to take more than 2 years.  In conclusion, 

the motor unit classification algorithm accomplished its goal of automatically 

tracking motor unit classes over a 24-hour recording with high accuracy.  The 24-

hour classification method developed here could be applied towards classifying 

long term recordings of other biological signals.   
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Chapter 1: Introduction 

Spinal cord injured (SCI) individuals have no voluntary control over some 

of their skeletal muscles, generally those innervated from spinal segments below 

the lesion.  These paralyzed muscles contract involuntarily (spasm) however in 

response to various stimuli such as vibration or changes in temperature 

[Karamura et al., 1989], [Little et al., 1989].  In other situations, involuntary 

contractions appear to be spontaneous in that no obvious stimulus generates the 

motor unit activity.  These different types of muscle activity can be recorded as 

electromyographic (EMG) activity. 

Spontaneous EMG activity has been observed by different investigators 

after spinal cord injury.  While studying the use of EMG biofeedback to improve 

hand muscle function, Stein et al. [1990] showed some first dorsal interosseus 

and thenar muscles were spontaneously active.  No apparent mechanism 

triggered this activity.  Zijdewind and Thomas [2001]  and Zijdewind et al. [2004] 

similarly have studied spontaneously active motor units in thenar muscles in 

humans with spinal cord injury. The spontaneously active motor units had two 

activity patterns – either firing tonically at around 6 Hz or sporadically at rates 

around 2 Hz.  The authors found that these motor unit firing patterns were 

present in 2-minute and 30-minute recordings.  Since there have been no long-

term recordings of such spontaneous EMG activity, it is unknown if the motor unit 

activity takes place over extended time periods.   

Long-term EMG recordings, for example over 24 hours, are important 

because they can provide detailed information about motor unit activity and 

1 
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muscle behavior.  They can aid in investigating the concept that only small 

amounts of neuromuscular activity are required to sustain muscle and motor unit 

properties as well as show activity differences between awake and sleep times.  

The effectiveness of spasm reducing medications can also be investigated 

through long-term EMG recordings.  The duration of a drug’s activity over time 

can be investigated by comparing muscle and motor unit activity before and after 

the medication is taken. 

To analyze single motor unit behavior, it is critical to identify the action 

potentials that belong to a single motor unit and to follow that unit activity over 

time.  A computerized method is required to accomplish this analysis because it 

is not practical to do these tasks manually.   A classification expert requires a 

complete 40 hour week to manually classify 12 minutes of EMG even with 

software support. If extrapolated to the entire 24-hour recording, the time 

required skyrockets to more than two years.  The overall objective of this 

research is to devise methods to automatically classify and analyze involuntary 

single motor unit activity in EMG recordings that are 24 hours in length.     
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Chapter 2: Objectives 

The overall objective of this research is to automatically analyze 

involuntary motor unit activity from surface EMG records with minimal 

intervention from the human operator.  The EMG arises from human thenar 

muscles that have been paralyzed chronically (>1 year) by cervical SCI.  Two 

channels of EMG were recorded from the thenar muscles in order to provide 

additional motor unit potential features to aid in classification. 

While there are currently several computerized classification tools 

available that are capable of analyzing EMG data for time periods ranging from 

several minutes to several hours [McGill et al., 2005], [Zennaro et al., 2003], 

there is presently no software package that can classify and track motor unit 

activity over a full 24-hour period.  Automation is also an integral feature of the 

classification and analysis of 24-hour EMG recordings because the task is 

complex and time consuming.   

Specifically, the aims in developing the classification algorithm are: 

1) To segment individual potentials from the continuous EMG recording. 

2) To cluster all of the motor units with stable templates shapes over the 

24-hour time period. 

3) To classify the potentials that belong to these most stable motor units 

over the 24-hour time period. 

4) To resolve any superimposed potentials into their constituent motor 

units using a modified peel-off method developed by Stashuk [2001]. 

3 
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5) To determine the number of trackable units and their firing behavior.  

The final output of the algorithm will also provide the motor unit 

potential template waveforms.   

6) To assess the performance of the automated classification algorithm 

and compare its outcome to motor unit classification completed by an 

EMG expert.  Four 3-minute records were classified manually for each 

of four, 24-hour recordings for a total of 16 gold standard 

classifications. 

7) To assess the trackability of the motor unit templates over 24 hours by 

comparing the results of the algorithm to the results of an expert 

classifier.  Gold standards detailing the presence of each global class 

in each 3-minute EMG portion were manually produced using the 

specially EMG classification software. 

Hypotheses: 

1) Automatic (software-based) classification of motor unit potentials is as 

accurate as manual (user-based) analysis of motor unit potentials. 

2) Automatic (software-based) classification of motor unit potentials is 

faster than manual (user-based) analysis of motor unit potentials. 

The first hypothesis will be tested by computing the classification performance 

against the inter-rater reliability of manually constructed gold standards for 

individual potential classification (as described above).  The second 

hypothesis will be tested by comparing the computing time of the algorithm 
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against the estimated time to generate a gold standard of the correct motor 

unit classifications for a 24-hour recording.  
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Chapter 3: Background 

3.1 Electromyography (EMG) 

3.1.1 Whole Muscle EMG 

The motor unit is the basic unit of contractile force produced by a muscle 

and consists of a motoneuron, its axon, and all of the muscle fibers that the 

motoneuron innervates [Sherrington CS, 1929].  Each muscle fiber in the motor 

unit produces a muscle fiber action potential (MFAP) that results from the 

propagation of an action potential along the excitable membrane of a muscle 

fiber.  The motor unit action potential (MUAP), which consists of the 

superposition of all individual MFAP produced in the motor unit, can be recorded 

as electromyographic activity, or EMG. [Stashuk DW, 2001], [Loeb and Gans, pg. 

xvii, 1986].   

When recording EMG from the skin surface, individual MUAPs can be 

seen during weak contractions.  As the strength of the contraction increases, 

these potentials overlap to produce an interference pattern which makes 

identification of potentials impossible.   

In 1965, Henneman et al. [1965] proposed the size principle to describe 

how motor units are recruited (activated).  The initial input signals to muscles 

only activate the weakest motor units.  As the strength of the input signal grows, 

stronger and stronger motor units are activated.  In summary, the weaker units 

composed of fatigue resistant fibers are activated, followed by units with more 

fatigable fibers when even more force is required.   

6 
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Force can be produced by muscles in two different ways – motor unit 

recruitment and firing rate modulation.  As more motor units are recruited, or 

activated, more force is generated.  The central nervous system also controls 

muscle force by motor unit firing rate modulation, where increases in firing rates 

yield more force [Farina et al., 2002].  Muscle force builds from its component 

individual twitch contractions of single motor units into a fused contraction where 

each new contraction occurs before the preceding contraction ends.  At a certain 

point, the successive contractions are so rapid (firing frequencies become high 

enough), they fuse together to produce a smooth and continuous contraction.   

The balance between motor unit recruitment and firing rate modulation 

varies in different muscles.  Kukulka CG and Clamann HP [1981] have shown 

that hand muscles like the adductor pollicis muscle rely primarily on recruitment 

of motor units to produce weak contractions (up to 30% of maximal force) and 

then more on firing rate modulation for production of stronger forces.  In contrast, 

in limb muscles (e.g. the biceps brachii) motor units are recruited up to high 

forces (70-80% maximal muscle force).   

 

3.1.2 Motor Unit Action Potentials (MUAPs) 

 The shape, amplitude, and duration of the motor unit action potential 

depend on many anatomical and physiological characteristics of the muscle 

fibers [Bekka RE et al., 2002].  Muscle fiber diameter and the number of fibers 

active affect the amplitude of the resulting MUAP.  Larger muscle fibers will 

generate higher amplitude signals.  The diameter of muscle fibers impacts the 
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MUAP conduction velocities, which are inversely proportional to the MUAP 

duration.  Larger diameter muscle fibers will have MUAPs with greater 

conduction velocities, and therefore MUAPs with shorter durations.   

The recording system also shapes the surface EMG that is recorded.  The 

tissue in between the electrodes and the muscle fibers influences the frequency 

spectrum of the resulting EMG signal by creating a low-pass filtering effect.  The 

electrodes themselves have their own filtering properties and the placement of 

the electrodes with respect to the innervation zone also determines the resulting 

EMG signal.  For example, the electrode configuration in Westling et al. [1990] 

and Thomas [1997] recorded two channels of EMG from the thenar muscles in 

unipolar configurations (see Figure 4.4, section 4.1.2).  The positive electrodes 

were positioned at the distal and proximal ends of the muscles with the common 

electrode for both channels positioned across belly of the muscles, close to the 

motor unit end plates, or in other words, where the muscles are innervated.  The 

distal and proximal EMG channels in this situation are of opposite polarities 

because the electrical signals originating from the motor end plates propagate 

towards the positive electrodes of each channel. 
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3.1.3 Involuntary and Spontaneous EMG 

 After spinal cord injury, paralyzed muscles (under no voluntary control) still 

exhibit EMG, and by definition, this EMG is involuntary.  Involuntary EMG can be 

in the form of muscle spasms brought about by some type of stimulus or there 

may be just spontaneously active motor units.  Involuntary EMG has been 

studied at the single motor unit level, as muscle spasms or in long term 

recordings.  These types of activity have only been explored in the laboratory 

environment over short time periods. 

 

3.1.3.1 Single Motor Unit Activity 

 Stein et al. [1990] found more spontaneous activity when investigating the 

contractile properties of paralyzed muscles (in incomplete injuries in humans).  

The authors characterized the active motor units that they observed into three 

discrete types.  The first category of motor units was those that were under 

voluntary control and had clear activation thresholds and a range of firing rates 

comparable to those of normal motor units.  The second category included those 

units that could only be slowly and weakly activated.  The final category 

consisted of those units that were not under voluntary control but were 

spontaneously active.  These motor units represented about 20% of all units that 

were studied and tended to fire at rates less than 5 Hz.  Although subjects could 

not activate these motor units voluntarily, their firing rates could increase when 

the muscle was stretched or undergoing a spasm.    
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Zijdewind and Thomas [2001] have observed two patterns of 

spontaneously active motor unit activity in SCI subjects during 2 minute 

recordings.  The motor units either fired tonically at a mean frequency of 6 Hz or 

fired more sporadically at a rate of 2 Hz.  Zijdewind et al. [2004] also recorded 

these spontaneously active motor units for 30-minute periods.  Motor units that 

fired with high variability were significantly stronger than those firing with low 

variability.  Irregularly firing motor units were also higher threshold units. 

Spontaneous EMG activity has been observed in healthy animals as well 

as able-bodied humans.  Tonic single unit firing has been recorded in the soleus 

muscles of cats without being accompanied by discernible movement of the 

hindlimbs, almost mirroring the spontaneously active motor units in SCI thenar 

motor units [Hensbergen E and Kernell D, 1997].  Eken [1998] also observed 

tonic motor unit firing activity in rats when they were standing still or asleep.    

Sporadically firing spontaneous units may be driven by synaptic noise.  

Matthews [1996] showed that the exponential decay on the right tail of motor unit 

interpotential interval histograms provides evidence that synaptic noise may be 

responsible for some motor unit firings.  Figure 3.1 shows interpotential interval 

histograms of motor unit data from two different muscles.



11 
 

 

Matthews transformed the interpotential interval histogram of a motor unit 

into a probability function, thus revealing the probabilities of future motor unit 

firings.  As the interpotential intervals become longer and longer, the probability 

that another firing will occur steadily increases up to a certain point.  This is the 

point where exponential decay behavior in the histogram begins (as indicated by 

the arrows in Figure 3.1).  After this point, the probability remains constant, 

meaning that the probability of the next firing becomes a random process.  This 

can be interpreted as the motoneuron firing being randomly excited by noise.  

The afterhyperpolarization (AHP), the process in which the motoneuron 

membrane potential drops below its resting value after a firing, is important in this 

Figure 3.1 Example histogram of slow firing motor units in two different muscles.  Interpotential 
intervals (the time between each motor unit firing) are shown for individual motor units in the 
soleus and abductor digiti minimi (ADM) muscles.  The mean firing rate for the soleus motor unit is 
about 5 Hz while that for the ADM is about 10 Hz.  The right tails of each of these histograms 
appear to decay exponentially, providing some evidence that synaptic noise may be causing some 
firings. The arrows indicate the start of the exponential decay behavior. [Modified from Matthews 
PBC, 1996] 
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process.  If the AHP is shorter than the time between firings, synaptic noise can 

enable the generation of an action potential [Matthews PBC, 1996]. 

Persistent inward currents, or PICs, may be related to spontaneous EMG 

activity.  Motoneurons were once thought to be merely passive structures in the 

nervous system, conveying a signal generated elsewhere, but are now thought to 

contribute an active component in the form of persistent inward currents.  A PIC 

is a depolarizing current generated by voltage sensitive ion channels that tend 

not to inactivate and are primarily generated in the dendritic regions of neurons 

[Heckman CJ et al., 2005].  PICs are involved in normal motoneuron activation in 

humans and have the ability of amplifying synaptic inputs by a factor of 5 

[Gorassini et al., 2004].  These currents can be inhibited in the able-bodied with 

the help of neurotransmitters originating from the brainstem, so that the actions 

of PICs are controlled.  In SCI individuals, PICs are less controlled by inhibition, 

and allow the production of excessive and undesired muscle contractions, like 

muscle spasms and can produce self-sustained firing of neurons. 

 PICs or synaptic noise may be responsible for spontaneously active motor 

units in SCI individuals that fire tonically or sporadically.  PICs are more likely to 

be the source of spontaneously firing motor units that fire tonically at relatively 

low frequencies.  The firing rate histograms for these motor units resemble 

normal distributions.   
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3.1.3.2 Spasm Activity 

Thomas and Ross [1997] and Gorassini et al. [2004] both observed motor 

unit activity during muscle spasms in SCI subjects.  Recording from the medial 

and lateral gastrocnemius, Thomas and Ross saw that the firing rate of most 

motor units (54%) increased up to the spasm peak and then decreased after the 

peak.  The firing rates observed were similar to those seen in ramp-force 

voluntary contractions of able-bodied subjects.  The remaining units fired 

doublets (two potentials close together) or at almost constant rates, around 6 Hz, 

with little rate modulation.  Gorassini et al. recorded from the first dorsal 

interosseus, tibialis anterior, soleus, quadriceps, and hamstring muscles and 

theorized that 40% of the motor unit activity during spasms was produced by 

PICs.  The firing rates towards the end of a muscle spasm were very low on 

average (around 3 Hz).  Hamstring motor units exhibited steady firing rates (in-

between 5 Hz and 11 Hz) with low variability. 

 

3.2 Long Term EMG recordings 

 Long term EMG recordings are essential for gaining insight into muscle 

properties and usage.  Aside from obtaining information on which muscles are 

active during daily activity, 24-hour EMG recordings on able-bodied individuals 

can also provide data as to how muscle activity is involved in maintaining muscle 

health and preserving its properties.  In spinal cord injured individuals, long term 

EMG recordings can quantify spasms, a severe impairment to quality of life, and 

yield data on 24-hour involuntary EMG activity.  In addition, long term recordings 
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of single motor units can reveal how the activity of individual motor units relates 

to the gross activity of the entire muscle.  For example, a certain medication may 

only dampen the activity of the whole muscle by a small amount because it 

influences some but not all of the motor units. 

 

3.2.1 Data Storage in Long Term Recordings 

 A critical issue in the history of long-term EMG recording is the inability to 

store large amounts of data.  This has been dealt with in a number of ways.  In 

many studies, the raw EMG is not directly recorded.  Instead, the raw EMG is 

processed into integrated EMG (iEMG), which is simply the EMG smoothed via 

low pass filtering, rectified, and integrated in sequential, equal time divisions.  

iEMG reduces the amount of data that has to be recorded because only one 

iEMG data point is stored for each time division.  These time divisions are always 

longer than the sampling period, thus effectively reducing the sampling rate of 

the EMG data.  The ability to reduce the amount of data that is recorded over 

long time periods makes iEMG recording a common long-term EMG recording 

technique in that net EMG activity can still be recorded over long periods of time, 

at the expense of losing some duration and intensity information. 

In their 24 hour EMG recordings, Tepavac et al. [1992] used an analog 

processing unit to compute the iEMG from the raw EMG before a 

microprocessing unit stored the processed data.  Since iEMG can be interpreted 

as the product of EMG amplitude and duration, the true value of either of these 

quantities is lost during a recording.  High iEMG values either means that there 
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was high amplitude raw EMG for a brief duration, or low amplitude raw EMG for a 

long duration or some combination of these possibilities.  In this way, critical 

information is lost with this data reducing technique.  In addition, any noise that is 

present is integrated as well and integrated noise can be mistaken for actual 

EMG activity. 

To resolve these situations in which EMG information has been lost, raw 

EMG must be recorded for the total duration of the recording period.  We now 

have the ability to store large amounts of data (greater than 1.0 Gigabytes) on 

flashcards, small media that act as hard disks, but without moving parts.  If 

storage space is still limited, a lossless compression routine can be performed by 

a microprocessor-driven data logger to compress the data online as it is 

sampled. 

There have been a number of advances that have made it possible to 

record raw EMG over long time periods.  Advances in flashcard design have 

enabled large quantities of data to be stored, enough to store two channels of 

raw EMG at high sampling rates suitable for the identification of single motor 

units.  A data logging device capable of recording 24 hours of raw, 

uncompressed EMG to a compact flashcard will be used in this study to collect 

long-term recordings.  In addition, data loggers have become small enough for 

subjects to wear for long durations.  Their processing power has also increased.  

Now that the raw EMG can be stored in long-term recordings, EMG intensity and 

duration information that was lost when recording iEMG can now be recovered 

for later analysis.   
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3.2.2 Previous Work in Long Term EMG Recording 

Hensbergen and Kernell [1997] applied a different data reducing 

technique to examine daily EMG activity in cat ankle muscles. They recorded raw 

EMG through FM telemetry, but for only 4-minute periods every half hour, for a 

total of 192 minutes of raw EMG over a 24 hour period, before later generating 

iEMG for offline analysis.  The authors recorded two channels of EMG 

simultaneously - one channel for the full hour and one channel for only 4 

minutes.  Upon comparing the iEMG obtained from these two sample times, the 

authors explained that these 4-minute samples were faithfully representative of 

an entire hour of activity.    

Alaimo et al. [1984] similarly recorded iEMG from ankle muscles of healthy 

and spinalized cats for a 24 hour period. They only recorded the first 10 minutes 

of each hour, for a total of 240 minutes of iEMG over a 24-hour period.  The 

authors “assumed” that this first 10 minutes of each hour was representative of 

the daily activity of the cats and do not discuss the possibility of incorrectly 

estimating the daily activity.  A cat’s activity over the portion of the hour during 

which the EMG is not recorded, may be totally different than the period during 

which the EMG is recorded.  A cat maybe extremely active during the actual 

recording period, and mostly inactive when the recording ceases, or the cat 

maybe inactive for the recording period, while being extremely active when the 

EMG is not being recorded.  These examples illustrate the potential for 

overestimation and underestimation of electromyographic activity by sampling for 

a few minutes each hour.   
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Authors have used different methods to store large amounts of data.  

Boose et al. [1996]  simultaneously recorded surface EMG from the extensor 

carpi radialis and flexor carpi ulnaris muscles of both forearms, using ECG 

electrodes for 24 hours so that they could quantify essential tremors through 

frequency analysis.  They used a medilog tape recorder to record the raw EMG 

in an analog fashion, and then later digitized the data by sampling at 200 Hz 

using a personal computer.  Sporrong et al. [1999] recorded two hours of surface 

EMG from the trapezius muscle with a portable device to investigate the 

workload of construction workers doing ceiling fitting tasks.  They used their 

portable device to compute the average rectified value and the mean power 

frequency of the EMG online, which was recorded using a sampling period of 2 

seconds. 

Pozzo M et al. [2004] developed a 64-channel long term EMG recording 

system similar to the data logging system described by Mavoori et al. [2005] in 

order to assess neuromuscular functioning in elderly workers to ameliorate the 

affects of neuromuscular disorders.  This system similarly records on type II 

flashcards, but samples each channel at 2 KHz and no online processing is 

done.  This limits the recording times to two hours at most on 1.0 Gigabyte 

flashcards. 

Airakisenen et al., [2005] and Mork and Westgaard [2004] both made long 

term EMG recordings from shoulder muscles to investigate chronic neck pain.  

Both sets of research groups recorded EMG from the skin surface over 24 hours 

in order to correlate EMG activity with neck pain.  Mork and Westgaard showed 
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that there was no direct, simple correlation between neck pain and sustained 

low-level muscle activity during sleep. 

Mavoori et al. [2005] utilized an implantable device called a neurochip in 

macaque monkeys to both process and record brain neuron activity. Their 

neurochip had 4 megabits of onboard memory, making it capable of recording 

140 milliseconds of activity every 9 minutes for a total of 36 hours of neuron 

recording.  This implantable device also had a built in spike discriminator that 

initiated recording whenever activity was present.  With low power consumption, 

the neurochip was able to record 60 hours of data and the authors were able to 

record nine days of data with battery changes. 

 

3.3 Muscle Health 

It has been hypothesized that small amounts of neuromuscular activity, 

such as the spontaneous tonic firing of individual motor units, are required to 

sustain muscle properties.  Healthy human leg muscles are only active for about 

14% of the day in any case [Kern DS et al., 2001].  Hodgson et al., [2001] 

attempted to determine how much muscle activity was necessary to preserve 

muscle properties by recording EMG from the hind limbs of Rhesus monkeys for 

24 hours.  They found that the soleus muscles were active for approximately 9% 

of the day whereas the other muscles studied (lateral gastrocnemius and tibialis 

anterior muscles) were only active for approximately 4% of the day.  The authors 

also analyzed the raw EMG intensities recorded from the hind limbs of healthy 

Rhesus monkeys over a 24 hour period and found that there were only brief 
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periods (less than one minute a day) when high-amplitude EMG activity was 

present in the soleus muscle.  The authors suggested that only brief durations of 

activity were required to maintain the normal functional properties of the skeletal 

muscles of healthy Rhesus monkeys.  This suggests that spontaneous motor unit 

firing in paralyzed muscles may serve a function in maintaining muscle health.   

Hodgson et al. [2005] conducted 24-hour EMG recordings in the leg 

muscles of rats to determine the relationship between muscle properties and the 

daily muscle activity.  Like the previously mentioned studies, this study found that 

most muscles were inactive for large portions of the day, including the more 

active soleus muscle that contains a large proportion of slow fibers.  It also 

showed that there was a poor correlation between the daily duration of muscle 

activation and the percentage of slow fibers in a muscle.  The general conclusion 

was that muscle fiber composition is maintained even when fibers are only 

activated for brief periods of time.  It is still unknown if muscle activity, 

manifesting itself in the form of spontaneously generated motor activity or muscle 

spasms, is important for the health of paralyzed muscles.   

Roy et al. [2007] studied spinal cord isolation as a model of disuse, a 

situation where the spinal cord is transected at two levels and all inflow to these 

spinal regions is eliminated by bilateral dorsal root section. Despite this attempt 

to remove all activity to leg muscles, short, high amplitude activity bursts were 

present in all the muscles they studied plus sporadic bursts in individual muscles.  

They proposed that the paralyzed muscle activity could be due to several 

possibilities.  The first possibility was that rat motoneurons and interneurons may 
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be exhibiting enhanced excitability, thereby causing spontaneous activity.  

Another possibility was that the increased excitability may have been due to 

enhanced excitability of the muscle fibers themselves.   

 

3.4 American Spinal Injury Association (ASIA) SCI Classification  

 Spinal cord injuries are classified by injury level and the severity of the 

injury as established by the American Spinal Injury Association (ASIA) [ASIA, 

2006].  The spinal cord consists of four segmental levels – cervical (neck), 

thoracic (chest), lumbar (back), and sacral (tail).  There are 7 cervical vertebrae, 

12 thoracic vertebrae, 5 lumbar vertebrae, and 5 sacral vertebrae.  The level of 

the injury can be established by testing: 1) the dermatomes and finding the 

corresponding spinal level at which there is or isn’t sensation; 2) muscle function 

at these same spinal levels.   

A dermatome is patch of skin that is innervated by a given spinal cord 

level. A chart is given in Figure 3.2 that describes the skin regions innervated by 

the associated spinal cord levels. 
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The C2 to C4 levels cover the dermatomes from the top part of the neck to the 

area just below the clavicle, respectively.  The C5 to T1 levels are situated in the 

arms, L1 to L5 represent the hip and groin area, and S2 to S5 represent the 

backs of the legs and the feet.    According to the ASIA worksheet [2006] for 

injury classification, there are three basic ratings for each of these dermatomes:  

0 for absent sensation, 1 for impaired sensation, and 2 for normal sensation. 

Figure 3.2 Dermatomes and their corresponding spinal levels.  A dermatome is a patch of skin 
innervated by a given spinal cord level as shown in the figure.  [Modified from ASIA, 2006] 
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 Ten regions of motor function can similarly be examined (Figure 3.3).  The 

figure shows that 10 sets of muscles which correspond to the spinal levels C5 

through C8, T1, L2 through L5, and S1.  There are five degrees of classification 

for motor function: A score of 5 means that there is active movement against full 

resistance; a score of 4 means that there is active movement against some 

resistance; a score of 3 means that there is active movement against gravity; a 

score of 2 means that there is active movement without respect to gravity; a 

score of 1 means that there is palpable or visible contraction; and, a score of 0 

indicates total paralysis.   

In this study, the thenar muscles investigated have no voluntary control or 

function, were paralyzed completely, and were rated as a 0. The level of injury 

was either C4, C5, or C6.  Shoulder muscles can be used voluntarily when a SCI 

is at C4.  Biceps brachii and wrist extensor muscles can also be used when the 

SCI is at C5 or C6, respectively. 
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ASIA also has an impairment scale based on five classifications, A 

through E.   Class A describes a complete injury – no motor or sensory function 

is preserved in the sacral segments S4 and S5.  Individuals with complete SCI 

will be used in this study.  Classes B through D describe incomplete injuries.  In a 

class B injury, sensory but not motor function is preserved below the neurological 

level and includes the sacral segments S4 and S5.  In a class C injury, motor 

function is preserved below the neurological level and more than half of the key 

muscles mentioned earlier have a muscle grade less than 3.  In class D injuries, 

Figure 3.3 Key muscles and their corresponding spinal levels.   Ten key groups of muscles are listed 
along with their corresponding spinal levels.  [Modified from ASIA, 2006] 
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motor function is preserved below the neurological level and at least half of the 

muscles below the neurological level have a muscle grade of 3 or greater.  

Finally, class E is normal, meaning that both motor and sensory function is 

normal. 

 
3.5 Spasticity:  A Problem for SCI Individuals 
 

SCI individuals are commonly afflicted by spasticity, but the way spasticity 

manifests itself varies greatly and depends on the level and completeness of the 

injury.  Spasticity is a complex phenomenon and may consist of hyperreflexia, 

clonus, increased muscle tone and spontaneous muscle spasms. The severity 

and distribution of such spastic activity can change over time. [Little JW et al., 

1989] 

Spasticity degrades the quality of life of the SCI individuals that it afflicts.  

In one questionnaire-based study consisting of 60 SCI subjects who complained 

about spasticity of the lower extremities, 91 % reported that spasms interfered 

with their activities to some extent.  65 % stated that the spasms disrupted their 

sleep.  Half of the patients reported that their spasms contributed to pain. [Little 

JW et al., 1989]  A similar study was conducted regarding the spasticity 

experienced by SCI subjects with a cervical cord injury [Karamura J et al., 1989].  

11 out of 13 patients stated that spasms interfered with their daily activities.    

Muscle spasms for both complete and incomplete SCI were almost always 

accompanied by triggers.  The list of triggers includes [Karamura J et al., 1989], 

[Little JW et al., 1989]: 
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1. Transfers from one position to another 
2. Bladder and bowel evacuation 
3. Voluntary motion like yawns and coughs 
4. Physical stimuli such as vibration and cold breezes 
5. Emotional stimuli such as excitement and emotional tension. 

 
Treatment methods must be developed in order to ease SCI individual’s 

daily struggle with spasticity, particularly the muscle spasms.  For example, the 

severity and frequency of spasms in the SCI subjects with a cervical level 

seemed to decrease after exercise [Karamura J et al., 1989].  

Although the negative effects of spasms have been mentioned so far, 

some SCI individuals use spasms to their advantage.  For example, a SCI 

individual may know how to trigger a spasm and that contraction can act to shift 

his or her position in bed without any additional help.  The involuntary muscle 

contractions may also be beneficial, helping to maintain muscle properties like 

strength, for example. 

Anti-spasm medications serve as a pharmacological treatment for muscle 

spasms.  Baclofen (which works on GABA-b receptors), diazepam, and clonidine 

are drugs that have been used individually or in combination to lessen the effects 

of spasticity on the spinal cord injured by dampening involuntary muscle activity.  

While there have been several studies to assess the effects of these drugs 

[Taricco et al., 2006], the outcome measures have varied between studies.  This 

leaves much doubt about the true effectiveness of treatment regimes of these 

drugs. 

The only way to evaluate treatments for spasticity is the development of 

some form of quantifiable measure of spasticity.  According to the Karamura J et 
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al. [1989] and a study assessing the effects of a muscle relaxant in reducing 

muscle spasms in SCI individuals, 24-hour EMG recording is the only way to 

quantitatively evaluate patient spasticity in order to develop treatments and 

assessments of spasticity.  One advantage of long term EMG recordings is that 

they capture all of the contractions, even the problematic muscle spasms that 

occur at night when laboratory experiments are not normally performed. 

3.6 EMG Signal Decomposition 

 EMG signal decomposition is a complicated multi-step procedure of 

resolving compound EMG signals into their constituent trains of MUAPs.  Some 

basic assumptions are needed when accomplishing EMG decomposition 

[Stashuk DW, 2001]: 

1) MUAPs produced by the same motor unit must be more similar in 

shape than the MUAPs produced by different motor units. 

2) Differences in MUAP shapes must be distinguishable. 

3) Each MUAP must occur enough times without superpositions and with 

MUAPs from other motor units so that the respective template shapes 

of each active motor unit can be determined. 

The basic process of decomposition involves the following fundamental steps: 

1) Segmentation, or candidate selection 

2) Clustering 

3) Superposition resolution 
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The EMG decomposition system must be able to resolve 2 or more units 

with similar shapes, frequent superpositions of MUAPs, and variability in shapes 

due to biological noise and variability [Stashuk DW, 2001]. 

 

3.6.1 Segmentation 

 The first step in EMG decomposition is segmentation of the signal into 

MUAP candidate waveforms.  The segmentation procedure is extremely 

important, as it will determine which potentials will be included in the analysis and 

the ease in their classification in later decomposition stages. 

The simplest method to isolate MUAP candidate waveforms is by means 

of an amplitude threshold.  The actual threshold value can be determined by the 

EMG signal frequency components, characteristics of the signal and noise 

components, or even a human operator [Fang J et al., 1999]. The choice of 

threshold can introduce bias against smaller MUAPs, but it is essential to 

consistently select those waveforms that can be successfully categorized 

[Stashuk DW, 2001].  Only those waveforms that are discernable by a human 

operator should be retained as candidate MUAPs to ensure that when an 

algorithm detects a candidate MUAP, it actually is a MUAP. 

Filtering can also be done to accentuate the prominence of candidate 

MUAPs and thus make candidate waveforms more discriminable.  Low-pass 

differentiation (LPD) filters have been used on raw EMG to reduce both the high 

frequency noise and the low frequency baseline noise, along with enhancing 

peak sharpness [Hassoun MH et al., 1994].  LPD filters also shorten the duration 
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of MUAPs, reducing their possible temporal overlap, decreasing the number of 

superimposed waveforms [Stashuk DW, 2001]. 

 Alignment is also a crucial factor in segmentation.  All candidate MUAPs 

that are segmented from the EMG signal on a per channel basis must be aligned 

in a consistent manner. Most systems either initially align peak values of either 

the amplitude or slope signal.  If consistency in alignment during segmentation is 

not maintained, the clustering steps that follow may fail to categorize similar 

candidate MUAPs.  Figure 3.4 demonstrates this situation. 

 

 

 

 

 

 

 

 

 

 

 

The same potential was segmented (or extracted) from the raw EMG recording 

with different alignments.  The blue instance of segmentation was extracted from 

the recording with its most negative point at the center of the window, while the 

black instance was segmented with the maximum point at the center of the 

Figure 3.4 Misaligned potential example.  Both the solid and dotted lines represent an identical 
potential that was segmented at 2 different alignments, the maximum and the minimum.  Although 
these are identical potentials, when distance measures, like the Euclidean distance, are applied, they 
will result in large distances, meaning that the potentials are not similar.  If they had been both 
segmented with the same alignment, a Euclidean distance measure would result in a value of zero, 
meaning that they were identical.  It is in this way that incorrect classifications can result. 
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window.  If these two potentials were compared using a distance measure such 

as Euclidean distance, their distance would be large.  The distance between 

them would be zero if they had been aligned by segmenting them both so that 

they were aligned at either the potential’s maximum or minimum points.  Major 

initial alignment errors can sometimes not be corrected later [Stashuk DW, 2001].   

 

3.6.2 Clustering 

 After the EMG signal has been segmented into candidate MUAP 

waveforms, they must be grouped into clusters, with each cluster ideally 

representing the motor unit that produced the MUAPs.  Clustering is defined as 

the partitioning of a set of objects (the MUAPs) into a number of similar classes 

or clusters [Stashuk DW, 2001].  If the number of active motor units is not known 

in advance, as is the case most of the time, the exact number of clusters is not 

known.  Each cluster also has a centroid, also known as a cluster mean or 

template shape that is also unknown.  The clustering algorithm must first 

determine the correct number of clusters and then correctly assign as many 

MUAPs as possible to the correct clusters so that template MUAP shapes can be 

recovered [Stashuk DW, 2001]. 

 Many different clustering algorithms exist and have been used for 

clustering candidate MUAPs.  Hierarchical, K-means, and artificial neural 

networks (ANN) clustering methods have been employed in clustering EMG 

signals for decomposition and classification.  MUAP firing pattern information has 
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also been used in conjunction with shape-based clustering to make 

categorization more robust [Schalk G et al., 2002].   

Except for ANN methods, clustering algorithms routinely use a distance 

measure for comparing candidate MUAPs.  Some distance measures commonly 

used include Euclidean, normalized Euclidean (based on waveform energies), 

and correlational distances.  Sections 3.6.2.1 and 3.6.2.2 describe clustering 

methods that utilize distance measures for clustering. 

 

3.6.2.1 Hierarchical Clustering 

 Hierarchical clustering is a distance-based clustering method in which a 

nested sequence of partitions is formed to divide the input set of objects into 

clusters.  The basis for hierarchical clustering is the proximity matrix. [Jain AK 

and Dubes RC, pg. 11, 1988]  The proximity matrix contains distances between 

the different objects that must form clusters.  In the case of multi-dimensional 

vectors, the distance between vectors can be a sum of the distances between 

vector components.  Typically, the proximity matrix is a dissimilarity matrix, 

meaning that the smaller a distance value between two objects, the more similar 

the objects are.  The columns and rows of the proximity matrix represent the 

different objects in the group that must be clustered (Figure 3.5).   



31 
 

The proximity matrix is a triangular matrix, meaning that the lower triangle of the 

two-dimensional matrix mirrors the upper triangle, and its diagonal is undefined.  

The values in the matrix are distances.  In Figure 3.5, for example, the distance 

between object 2 and object 4 is 1.8.   

In the agglomerative method of clustering, each object is given its own 

cluster, and through a sequence of combinations, these clusters are merged into 

larger clusters.  As the combination is done, the proximity matrix is updated to 

reflect the absence of the previous objects and the addition of the new clusters.   

Two algorithms that conduct object merging in this hierarchical fashion are 

single-linkage and complete linkage clustering.  In both clustering methods, the 

two most similar objects are first found.  The rows and columns corresponding to 

the smallest distance value represent the objects to be merged into a cluster.  

The two objects are then merged into an individual cluster.  The two algorithms 

differ in how the proximity matrix is updated to reflect the new clustering.  In the 

single linkage algorithm, the distances between the new cluster and the previous 

objects are replaced by the smaller of the two distances of the original objects 

that were just combined to form new objects.   

Figure 3.5 Example proximity matrix.  The proximity matrix shows the difference between objects in a 
dataset.  For example, the distance between objects 4 and 2 is 1.8. 
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In Figure 3.6A, the single-linkage algorithm is used to update the proximity 

matrix, forming a new cluster by combining objects 3 and 5 and replacing the 

distances from 3 and 5 to all other objects with the smaller of the two 

corresponding values from the previous proximity matrix (Figure 3.5).   

In Figure 3.6B, the complete-linkage algorithm similarly updates the 

proximity matrix, but the larger of the two corresponding values from the previous 

proximity matrix are used to replace the distances from objects 3 and 5 to all 

other objects. 

Since the new distance values replaced are the smaller of the groupings, it 

can be seen as a nearest neighbor method.  In complete-linkage clustering, the 

distances between the new cluster and the previous objects are replaced by the 

larger of the two distances of the original objects.  For example, in Figure 3.6B, 

Figure 3.6 Proximity matrix update for hierarchical clustering algorithms.  A) Single linkage algorithm. 
B) Complete linkage algorithm. 
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the larger of the 2 corresponding values from the previous proximity matrix are 

used to replace the distances from object 3 and 5 to all other objects. 

In the single-linkage and complete-linkage clustering algorithms, the same 

merging process is continued until there are no individual objects remaining.  The 

result of these linkage algorithms is a dendrogram.  The dendrogram (Figure 3.7) 

is a tree-like diagram displaying which objects or clusters of objects have been 

merged. 

 

 

 

 

 

 

 

 

 

 

 

 

The number of clusters obtained from these types of hierarchical clustering 

depends on the distance level, or distance threshold, at which the dendrograms 

are cut.  For example, when the complete linkage dendrogram in Figure 3.7 is cut 

at distance levels of 3.0, 2.0, and 0.8, the number of resulting clusters is 2, 3, and 

Figure 3.7 Resulting dendrograms for single and complete linkage hierarchical clustering 
algorithms. Slightly different dendrograms result from combining objects in the proximity matrix from 
Figure 3.5.  Objects are grouped by distances from each other, with the closest objects joined by 
branches on the dendrogram.  [Modified from Jain AK, pg 73, 1988].   
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4, respectively (Figure 3.8, A,B, and C).  The order in which the objects are 

merged does not affect the final resulting dendrogram. 

 

 

 

 

 

 

 

Figure 3.8 Resulting Clusters from cutting dendrograms for complete linkage algorithm.  When 
the Dendrogram is cut at distance levels of A)3.0, B) 2.0, and C) 0.8, cluster numbers of 2, 3, 
and 4, result, respectively.  [Modified from Jain AK, pg 73, 1988] 
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3.6.2.2 K-means Clustering 

 Partitional clustering methods, like K-means clustering, when given a 

known number of clusters, K, beforehand, attempt to create K cluster set 

partitions to separate each cluster [Stashuk DW, 2001].  The partitions are found 

through the minimization of a specified function, usually an error function.   

In partitional clustering methods, object vectors are assigned to the cluster 

whose centroid (equation 3.1), or mean vector, is closest. 

∑
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In equation 3.1, 
)(km

v
 is the centroid of cluster k, nk is the number of vectors that 

are contained in cluster k, and 
)(k

ix
v

is an individual vector belonging to cluster k.   

The K-means iterative partitioning algorithm does object vector 

assignments based on the total squared error, the error function (equation 3.2). 
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The K-means algorithm [Jain AK and Dubes RC, pg.96-97] follows the following 

steps: 

1) Select initial partitions with K clusters.  The initial clusters can contain 

object vectors selected at random or those vectors that are a good 

estimate to the actual cluster means.  Hierarchical clustering can even 

be used to set an initial partition.  

2) Generate new partitions by assigning each object vector to its closest 

cluster centroid. 

3) After all object vectors are assigned, recompute the cluster centroids 

and the total squared error.  Each run through assignment of all object 

vectors is known as a pass.  Cluster centroids can also be recomputed 

after each individual object vector assignment. 

4) Repeat steps 2) and 3) until a global minimum of the error function is 

reached, or the computed squared error stabilizes. 

Additional steps can be added to the K-means algorithm to improve its versatility.  

New clusters can be created if certain conditions are met.  Clusters can be split if 

too many object vectors become members of a cluster and there is a large 

variance along a vector component with the largest spread.  Small clusters can 

be viewed as outliers and removed from clustering entirely [Jain AK and Dubes 

RC, pg.96-97]. 

In partitioning methods, the order in which the data are considered can 

change the final results.  Typically the K-means algorithm can be run a series of 

times to try to reduce the minimum error and achieve the global minimum of the 
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error function to improve the clustering.  Since the K-means algorithm can 

become “trapped” in a local minimum, a forcing pass can be used to perturb the 

partitions to avoid ensnarement in a global minimum [Jain AK, pg.96-97].   

 

3.6.2.3 Fuzzy Clustering 

The clustering methods in the preceding sections have discussed “hard 

clustering” methods.  In “hard clustering” an object or pattern is a member of a 

particular cluster, or it is not.  In fuzzy clustering, however, cluster membership is 

not binary, but assumes a range of values.  In this way, the “degree” of cluster 

membership is addressed for each pattern.  Fuzzy K-means clustering is similar 

to K-means clustering in that K clusters are formed and K is known beforehand.  

However, the output of the fuzzy K-means clustering is a membership function 

that describes the degree to which each object is a member of each cluster.  

These membership function values can range from 0 to 1, and all membership 

function values for a particular object for all of the K clusters, must sum to 1.  

This is demonstrated in equation 3.3, where µij is the membership function value 

of pattern j to cluster i and K is the total number of clusters. 
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The fuzzy K-means algorithm is an iterative procedure that continually 

recomputes membership function values, then uses these values to find the 

cluster centroids, and compares the change in the distance between centroids 

(3.3) 
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from one iteration to the next.  Once the change is less than a given value, then 

the algorithm is terminated. 

 The iterative version of the fuzzy K-means proceeds as follows: 

Step 1) Random values are assigned to the membership function so that 

equation 3.3 is true. 

Step 2) The fuzzy centroids, iV , for each cluster I are computed, where jX  is the 

pattern and there are N patterns (equation 3.4).  q is the fuzziness index which is 

determined empirically and usually q > 1 [Zouridakis G and Tam DC, 2000]. 
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Step 3) Compute the updated membership function values based on the new 

centroids obtained (equation 3.5).  ),(2 ij VXd  is the squared Euclidean distance 

between each pattern and the cluster centroid, and is given by equation 3.6.  In 

equation 3.6, each pattern has M points and )(nX j is the point by point 

representation of the pattern jX , and )(nVi  is the point by point representation of 

the centroid iV . 
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Step 4) Compute the total error, ETotal by summing the Euclidean distances the 

previous cluster centroid, iV , and the updated cluster centroid, 
*

iV . 
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Step 5) If the total error is less than a given small value, then stop.  Otherwise, 

go back to step 2. 

 The fuzzy partitions created by fuzzy K-means clustering are not the end 

of the algorithm.  The fuzzy membership values generated must be defuzzified to 

achieve crisp centroids and classifications.  The defuzzification can simply be 

accomplished by using a threshold value for the membership function.  If the 

membership value for a particular pattern is greater than some value µT for some 

cluster i, then the pattern is a member of that cluster i for which the threshold is 

exceeded.   

A validity criterion can be used to address the correctness of clusters.  

Equation 3.8 shows a clustering validity function, S, for fuzzy clustering.  This 

validity function is expressed as the ratio of the compactness to the separation of 

clusters. 

(3.6) 

(3.7) 
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A smaller S value means a more compact, separate partition and thus a better 

clustering [Zouridakis G and Tam DC, 2000]. 

 

3.7 Previous Attempts at Classifying EMG 

There have been many past endeavors at automatically classifying EMG 

recordings at the motor unit level.  They have used ANNs and complex 

algorithms.   Christodoulou and Pattichis [1999] used a multi-step process 

involving ANNs to decompose EMG signals in order to diagnose neuromuscular 

diseases.  After preprocessing and segmentation, their system consisted of a 

self-organizing map type ANN followed by a learning vector quantization stage to 

fine tune the ANN, and finally yield a motor unit potential classification (Figure 

3.9). 

 

 

 

 

 

 

 

(3.8) 
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Superimposed potentials were resolved using an iterative peel-off algorithm that 

cross-correlated each superimposed potential with a class template and then 

applied a Euclidean distance measure to verify which template potentials were 

contained within the superposition. 

Fang, Agarwval, and Shahani [1999] used a method based in the wavelet 

domain to classify multi-unit EMG signals.  The authors segmented potentials 

Figure 3.9 Christodoulou and Pattichis’ EMG classification system.  After preprocessing and 
segmenting potentials, a self-organizing map ANN along with one stage of learning vector quantization 
classifies motor unit potentials into different classes.  The system then determines parameters such as 
peak-to-peak amplitude and duration and resolves superimposed potentials by means of an iterative 
peel-off method.  [Modified from Christodoulou CI and Pattichis CS.  1999] 
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using wavelet coefficients to select the proper threshold and then classified 

potentials based on similar wavelet coefficients. 

Hassoun et al.’s [1994] NNERVE system utilized an auto-associative ANN 

with specially designed training rules for automated EMG decomposition.  After 

linear predictive filtering, segmented potentials were aligned and combined with 

several features, such as amplitude and the norm of the dataset, to constitute 

input patterns for training examples for an ANN.  The ANN’s targets for the 

training examples were the training examples themselves, so that the ANN, using 

a special pseudo-unsupervised training algorithm, could learn binary patterns to 

represent several classes of motor unit potentials, instead of memorizing the 

individual potentials themselves.  Hamming distances, or bitwise differences 

between binary numbers, from the binary patterns were used to classify motor 

unit potentials.  Finally, an inter-potential-interval analysis was conducted to 

refine classification. 

Stashuk [1999] used a “certainty-based” method for classification.  First, a 

modified K-means shape algorithm and an error-filtered estimation algorithm that 

attempted to estimate firing rate information are used to cluster similar potentials.  

The author then used a certainty-based method, which involves fuzzy values for 

further classification.  The certainty-based method attempts to emulate the job of 

a human classifier by looking at several characteristic features of a potential and 

weighing each one against specified rules to determine if classifications are 

appropriate. 
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Several authors have attempted motor unit classification in EMG using 

timing based methods.  Schalk et al. [2002] used interpotential interval (IPI) 

based clustering to classify MUAPs.  The interpotential interval is the time 

between firings of MUAPs.  They mapped MUAP trains into a two dimensional 

feature space consisting of a mean IPI and a time offset relative to an arbitrary 

starting time (Figure 3.10).   

Figure 3.10 MUAP classification by means of mapping MUAP trains to a feature space.  MUAP 
trains are mapped to a two dimensional feature space by iteratively subtracting a mean IPI from the 
firing time of each potential and repeating this process for different mean IPIs.  After plotting the 
values in A, a 1-dimensional filter is applied that works along the mean IPI axis with the offset value 
being held constant for each offset value (to obtain B).  The bright patterns in the graph are those 
MUAP trains that are most likely to have the mean IPI as indicated on the mean IPI axis. [Modified 
from Schalk G, Carp JS, and Wolpaw JR.  2002] 
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By iteratively subtracting a number of mean IPI from the firing time of a given 

potential, the corresponding nonzero offset for each potential can be determined 

so that mean IPI – offset ordered pairs can be computed for plotting in the new 

feature space. The offset/mean IPI information can then be plotted and filtered 

with a 1-dimensional Gaussian function that operates by holding the offset 

constant and filtering along the mean IPI axis.  The resulting graph in Figure 3.10 

shows which trains of MUAPs are likely to have a given mean IPI.  The lower 

triangle of the graph is undefined because the offset cannot be greater than the 

mean IPI.  The bright patterns in the Offset vs. mean IPI graph are those MUAP 

trains that are most likely to have potentials that belong to a MUAP train with a 

mean IPI as indicated on the mean IPI axis.  However, there can be “ghost” 

bright lines on the graph at 0.5 multiples of the mean IPI, complicating IPI 

determination. 

Chauvet et al. [2003] sequentially extracted MUAP waveforms based on 

the mean IPI and largest peak to peak value over an entire recording before 

using fuzzy classification on the extracted waveforms.  First, the IPI histogram of 

the entire recording would be constructed and it was filtered using a zero-phase 

filter to reduce fluctuations.  The representative IPI was that which produced the 

maximum value of the filter.  The representative peak to peak value was 

determined similarly by constructing a peak to peak value histogram over the 

entire recording.  The representative waveform was finally determined by 

selecting the MUAP whose peak to peak value best matched the representative 

peak to peak value.  Fuzzy logic based classification was then applied using 3 
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inputs:  relative IPI, relative peak to peak value, and the crosscorrelation value 

computed between the current waveform and the representative waveform.  The 

relative IPI and peak to peak values were computed as the percentage difference 

between the IPI and peak to peak values of the current waveform and those 

values of the representative waveform (equations 3.9 and 3.10). 

tiverepresenta

tiverepresentacurrent
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In equation 3.9, ∆IPI is the relative IPI value, IPIrepresentative is the representative 

IPI value, and IPIcurrent is the current potential’s IPI.   In equation 3.10, ∆PtP is the 

relative peak to peak value, PtPrepresentative is the representative peak to peak 

value, and PtPcurrent is the current potential’s peak to peak value.  The fuzzy 

values obtained from the membership functions applied to these inputs are then 

used in conjunction with rules in a decision table to determine class membership.  

After all potentials have been classified in this manner, those potentials that fit 

into the class of the representative potential are removed from the input 

recording, and the process is repeated to obtain more representative values for 

different MUAP classes.  The authors admit that this algorithm can only 

successfully function with at most four different classes. 

McGill [2002] developed an “optimal” method to resolve superpositions of 

MUAPs into their constituent potentials.  This method is called optimal because it 

(3.9) 

(3.10) 
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can resolve high level combinations (greater than two constituents) of 

superimposed potentials and also because it uses interpolation to overcome 

inherent misalignment errors in digitally sampling waveforms.   

McGill also incorporated this method into EMGLAB, an interactive EMG 

decomposition tool written in Matlab [McGill KC et al., 2005].  This method 

utilized one or more channels of multi-unit EMG recorded from healthy muscles 

of able-bodied individuals using needle and wire electrodes.  The signals were 

sampled at 10 KHz.  The algorithm accomplished clustering by assigning 

symbols to windowed waveforms that were based on relative amplitudes, 

durations and slopes [Florestal JR et al., 2006].  The authors used a novel 

similarity metric known as the pseudo-correlation to match potentials. 

Zennaro et al. [2003] tackled the problem of EMG decomposition of EMG 

recordings ranging from three minutes to several hours.  The authors applied 

wavelet-based classification to three channels of intramuscular EMG along with a 

weighted averaging technique to track changes in the shapes of MUAP 

templates.  Figure 3.11 details the classification algorithm.   
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In order to isolate individual MUAPs, segments of activity were found and defined 

as deviations from the signal baseline.  The three channels of EMG were 

analyzed simultaneously, with each active segment considered as coming from a 

pool of segments within a single channel.  Wavelet transforms were applied to 

the MUAPs and only several bands of frequency components were retained for 

classification.  The specific frequency bands were retained based on optimization 

criteria for this given application.  The authors achieved a mean rate of 96.1% of 

correctly classified MUAPs with a standard deviation of 2.6%. 

 Several 24 hour studies recording EMG have been done, but few have 

actually attempted analysis at the single motor unit level.  Even then, the 

descriptions of motor unit behavior are qualitative [Eken, 1998], [Hennig and 

Figure 3.11 Zennaro et al.’s flowchart for wavelet-based EMG classification.  Three channels of EMG 
were analyzed simultaneously according to the decision making in the flow chart above.  If a detected 
motor unit action potential could not be classified it was sent to a buffer where it would be saved for 
clustering of other similar unclassifiable potentials.  Newly computed clusters are then used to classify 
subsequent potentials that are detected. [Modified from Zennaro, 2003] 
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Lomo, 1985].  No studies have addressed classification of motor unit action 

potentials for 24 hours of data.  Thus, 24-hour recording exploits have largely 

involved analysis at the whole muscle level. 
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Chapter 4: Methods 

4.1 Experimental Protocol 

4.1.1 Electrode configuration and 24-hour EMG Recording Setup 

 The subject pool consisted of 4 SCI subjects with cervical level injuries 

that were 1 year or more post injury.  The thenar muscles (abductor pollicis 

brevis, flexor pollicis brevis, and opponens pollicis, Figure 4.1) of at least one 

hand were not under voluntary control as confirmed by manual muscle 

examination [Thomas CK, 1997].  All subjects signed informed consent forms 

approved by the University of Miami IRB.  One 24-hour recording was made per 

subject. 

Figure 4.1 Structure of the thenar muscle (right hand).  The thenar muscle consists of three muscles:  
Flexor pollicis brevis, abductor pollicis brevis, and opponens pollicis [Modified from Kapit W and Elson 
LM, 1977]. 

49 
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Subject histories are presented below in Table 4.1.  This table details the age 

and sex of each subject, the hand used in the experimental, injury information, 

and any anti-spasm medications that each subject was taking.  Only subject 3 

took no anti-spasm medication. 

 

Five new self-adhesive electrodes (Superior Silver electrodes, Uni-Patch, MN) 

were trimmed to approximately 1 cm x 2.5 cm using scissors so that they could 

be positioned across the thenar muscles.  The distal electrode was positioned 

across the metacarpal-phalangeal joint, the proximal electrode at the base of the 

thenar muscles, and two closely spaced electrodes across the muscle bellies at 

their midpoint (Figure 4.2).  Another electrode was placed just proximal to the 

wrist as a ground, distally and proximally over the thenar muscle to yield a 2-

channel unipolar recording setup.   

 

 

 

Recording 
Side 

Studied 
Age 
(yrs) 

Sex 
Injury 

Duration 
(yrs) 

Injury 
Cause 

Level ASIA 
Spasm 

medications 

Subject 1 Left 30 M 1 Diving C5 A 
Neurontin (1500 

mg/day) and Klonopin 
(5 mg/day) 

Subject 2 Left 49 F 9 
Horseback 

Riding 
C4 A 

Baclofen (150 
mg/day) and Klonopin 

(0.75 mg/day) 

Subject 3 Right 27 M 10 Diving C4 A None 

Subject 4 Right 60 M 38 
Motor 

Vehicle 
Accident 

C6 A 
Diazepam (60 

mg/day) 

Table 4.1 Subject history.   
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The electrodes were then secured to the thumb skin overlying the thenar 

muscles using a layer of hypafix medical tape, followed by several wrappings of 

athletic tape and co-flex to make sure that the electrodes maintained the same 

position on the skin during the EMG recording. 

The electrodes were connected to the inputs of two differential 

preamplifiers as shown in Figure 4.2.  These preamplifiers were manufactured by 

Figure 4.2 Electrode configurations for recording two surface EMG channels from the thenar 
muscle on the right hand.  Each differential EMG premamplifier had three inputs: a positive 
electrode , a negative electrode, and a common electrode.  A wrist electrode was utilized as the 
common for both preamplifier channels.  Channel 1 served as the distal channel while Channel 2 
was the proximal channel.  The negative electrodes were placed very closely next to the common 
electrode so that the differential amplifiers could emulate unipolar electrodes. 
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Motion Control (Salt Lake City, UT) and have gains of approximately 400.  An 

electrode was positioned on the wrist to serve as the ground for both 

preamplifiers. 

The preamplifier outputs were first connected to a preprocessing unit.  The 

preprocessing unit was responsible for scaling the signal to an approximate 2 V 

baseline and further amplifying the signal to fill the input range of the data logger.  

The net gain of the additional amplifiers in the preprocessing unit was 1.5 for 

each channel.  The preprocessing unit was also equipped with analog bandpass 

filters with cutoff frequencies of 10 Hz and 1000 Hz. 

The preprocessing unit out put was then connected to a portable, battery-

powered data logging device with a 12-bit analog-to-digital converter that accepts 

input signals from 0 Volts to 4.096 Volts (Figure 4.3).   

The data logging device consisted of the Tattletale 8 Logger, 

manufactured by Onset Computer Corporation, driven by specially designed 

software.  The software acquired data through a two input analog-to-digital 

Figure 4.3 Battery powered data-logging device for recording two channels of EMG at 3200 Hz.  
The device stores the data on a type II PCMCIA flashcard or compactflash card, which acts as 
a hard disk drive. 
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converter (ADC) and permanently stored the data on a 1.0 Gigabyte type I 

compact flashcard for later analysis.  Computers recognize these compact 

flashcards as hard disk drives, although they have no moving parts. The ADC 

used a sampling frequency of 3.2 KHz and a 7.2 volt rechargeable battery was 

used to power the logger.  

 The data logger was calibrated prior to starting the 24 hour recording.  A 

100 Hz, 1 mV peak to peak sine wave obtained from a signal generator was 

supplied directly to each EMG preamplifier channel for about a minute and a 

recording was made on the data logger.  The recorded sine wave was used to 

relate the input voltage to the recorded voltage for both channels.  The same 

calibration procedure was done after the recording because the calibration 

changes over time as the data logger’s batteries drain.  Table 4.2 shows a list of 

the results of the 1-minute calibration recordings for all four test recordings 

 

4.1.2 Stimulation Protocol 

Before and after the 24-hour recording was started, maximal compound 

action potentials (M-wave) were recorded from the thenar muscles in response to 

Recorded Peak to Peak Sine Wave (in mV) 

Recording 
Distal Pre-
recording 

Proximal Pre-
recording 

Distal Post-
recording 

Proximal Post-
recording 

Mean 
Distal 

Mean 
Proximal 

Subject 1 686 653 679 649 682.5 651 

Subject 2 683 653 681 650 682 651.5 

Subject 3 681 653 679 647 680 650 

Subject 4 692 651 689 651 690.5 651 

Table 4.2 Calibration values for the data logger.  The values in the table are the number of millivolts 
in the recorded signal that correspond to a 1millivolt input signal for each channel, distal and 
proximal.  The pre-recording calibration values were before the 24-hour recording had started and 
the post-recording calibration values were found after the recording had ended.  The mean of the 
pre- and post- calibration values are also shown. 
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supramaximal stimulation of the median nerve.  Comparison of the maximal 

evoked M-wave before and after each 24-hour recording was used to gauge the 

stability of the recording electrodes and to normalize all template potential 

amplitudes so that they could be compared across recordings. 

 The stimulation protocol in Thomas [1997] is again presented here.  Each 

SCI subject positioned their wheelchair alongside a platform that supported the 

forearm of the hand to be studied.   The forearm was supinated, extended, and 

resting in a vacuum cast supported by a platform (Figure 4.4). 

 

 

Clay was molded to the shape of the hand to stabilize it.  A metal plate lay on the 

fingers to restrain them.  A custom-made transducer was aligned along the 

Figure 4.4 Stimulation setup. 
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length of the thumb so that approximately 0.5 N of resting tension was applied in 

both the abduction and flexion directions. Force was registered in both of these 

directions at right angles so the resultant force could be calculated. Single pulses 

(50 µs duration) were delivered to the median nerve at increasing intensities until 

the M-wave was maximal. All subsequent stimuli were 120 % maximal. The 

following stimuli were delivered to the nerve: 1) 5 single pulses to elicit initial 

maximal M-waves (distal and proximal) and initial twitches. 2) A train of stimuli at 

50 Hz for 1 s to determine the maximal evoked force. 3) 5 single pulses to elicit 

twitches after posttetanic potentiation [Thomas et al. 1990]; 4) 2 min of 

stimulation at 40 Hz (13 pulses each second) to induce fatigue [Burke et al. 1973; 

Thomas et al. 1991]; 5) post fatigue responses including single pulses and trains 

of pulses at 5–100 Hz as before fatigue.  The stimuli that induced muscle fatigue 

and post fatigue responses (4, 5 above) were only delivered after the 24-hour 

recording. 

EMG was recorded from the distal and proximal surfaces of the thenar 

muscles, and the abduction and flexion forces were each sampled on-line at 

3,200 Hz and 400 Hz, respectively, using SC/Zoom (Physiology Section, IMB, 

Umeå University, Sweden). All data analyses were done off-line. The vector sum 

of the measured abduction and flexion force components represented the 

magnitude of the evoked forces. Three M-waves and twitches recorded before 

and after the stimuli at 50 Hz were measured. The EMG potentials obtained from 

both the distal and the proximal channels were characterized by peak to peak 

amplitude.  
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4.1.3 24-hour Recording Initiation 

After a subject had undergone the stimulation protocol, the 24-hour 

recording was started.  The data logger was stored in a belt bag and could be 

moved for transfers.  A light on the data logger flashed to indicate that EMG was 

being recorded. 

 

4.2 EMG Preprocessing 

 24-hour EMG data were preprocessed before any analysis was done.  

The raw EMG data could assume integer values from 0 through 4095, since the 

ADC was 12-bit and accepts voltages between 0 and 4.095 V.  The baseline of 

the signal was level shifted so that it appeared at about a value of 2048, or 

(2.048 V as acquired).  Before any processing, all EMG data were demeaned 

and then smoothed using a simple 3-point, symmetric moving average filter.  The 

recording was next filtered with a 60 Hz second order notch filter and was applied 

twice (reversing the order of the input signal the second time) to prevent phase 

distortion.  The last filtering step depended on the quality of the recording and 

either involved high pass filtering at 30 Hz, or bandpass filtering.  One of the raw 

EMG recordings was clean so only a highpass filter was applied (subject 1).  

Frequency spectra of portions of the remaining recordings were inspected and 

upper cutoff frequencies for bandpass filters were determined individually.  Table 

4.3 shows which additional filters were applied to each recording. 
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The filtered EMG was divided by 100 as the final step before processing.  

The classification routines utilized by the overall classification algorithm worked 

best with amplitude values in between -2.0 and 2.0  The division by 100 shifted 

the amplitude values of most discernible potentials into the target range of -2.0 to 

2.0.  The actual recorded signal of interest therefore translated into a signal of +/- 

200 mV, or 400 mV peak to peak.   

 The voltage at the skin surface of the signal of interest can be determined 

using the calibration values from Table 4.2.   

 

(400 mV logger) x (1 mV EMG input / 682 mV logger) = 0.5865 mV EMG input 

 

(Note: the 682 mV calibration factor was taken from Table 4.1 and used as an 

example).  The maximum recordable range (before saturation) is actually 10 

times that amount, or 5.865 mV peak to peak, because the upper limits of the 

data logger’s recording range is actually 4000 mV peak to peak. 

 

 

 

 

Recording Filter parameters 

Subject 1 30 Hz Highpass 

Subject 2 30-500 Hz Bandpass 

Subject 3 30-1075 Hz Bandpass 

Subject 4 30-500 Hz Bandpass 

Table 4.3 Additional filtering for each 24-hour EMG recording.  Individual recordings were 
additionally filtered by either highpass or bandpass filters depending on the quality of the raw 
EMG signal.   

(4.1) 



58 
 

4.3 Motor Unit Action Potential Classification Algorithm 

 All data were processed using Matlab 7.0 and 7.4, a programming suite 

capable of performing complex computations to simple processing tasks.  Matlab 

also has the capability of creating stand-alone applications without the 

requirement of having Matlab installed on the target system.   

The motor unit action potential classification algorithm utilized two channels of 

EMG and consisted of four processing passes through the 24-hour recording.  

Since two channels of EMG were used instead of one, the algorithm was 

provided with twice the information to classify motor unit potentials.  For example, 

the motor unit action potential waveforms in each channel were unique with 

differences in potential amplitude, duration, shape and polarity.  These features 

also added an extra layer of differences to be categorized. The algorithm first 

broke the recording into 480, 3-minute portions and processed the EMG at the 3-

minute level before finalizing the procedure by uniting all classifications.   
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Figure 4.5 shows the steps of the classification algorithm.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These steps included: 1) segmentation and threshold determination, in which a 

global threshold was computed in order to isolate individual motor unit potentials; 

2) clustering, in which similar potentials were grouped into their respective motor 

unit classes; 3) motor unit template uniting where the most stable, commonly 

occurring classes were found throughout the 24-hour recording; 4) final 

unclassified search, where all unclassified potentials were compared to the 

Figure 4.5 Block diagram for motor unit potential classification.  Automated classification of motor 
unit potentials is a process consisting of four major passes. 
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global motor unit templates in order to either achieve a classification with or 

without the need for superposition resolution. 

 

4.3.1 EMG Segmentation  

Segmentation represents the method of breaking up the EMG signal into 

individual motor unit potentials.  This is done by windowing, or keeping track of 

the potential by extracting the datapoints that comprise the potential, for later 

classification. Segmentation occurred in three phases and on both the distal and 

proximal channels independently.  In the first phase, all 480, 3-minute EMG 

portions were segmented to find amplitude thresholds at which to extract 

potentials.  Three minutes was found to offer the best recording length for 

clustering and provided feasible recording lengths for manual classification and 

processing.  In the second phase, all the 3-minute EMG portion thresholds were 

utilized to compute a global segmentation threshold.  The third and final phase 

actually segmented candidate motor unit potentials using the global 

segmentation threshold. 

 

4.3.1.1 Segmentation Phase 1 

The 3-minute thresholds for segmentation were found by computing an 

estimate of the baseline thickness based on a windowed peak to peak value 

signal, for both the distal and proximal channels independently.  Motor unit 

potentials resemble spikes, so filtering was done to emphasize the peak to peak 

value of these spikes and also get an estimate of the baseline width.  A simple 
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peak to peak filter determined the peak to peak EMG value (maximum value – 

minimum value) in consecutive windows of 32 data points (10 ms) (Figure 4.6).  

This time length was used because it was approximately half the duration of a 

MUAP and approximately captured the outline of the baseline of a rectified EMG 

signal. 

 

 

 

 

 

 

 

The regional baseline value was next computed by finding the smallest 

value within fixed windows of 150 points (47 ms).  This value was assumed to be 

a regional representation of the baseline and the 150 point width proved to be the 

width that best represented the regional EMG activity.  The mean and standard 

deviation of all the regional baseline signals for every 3-minute EMG portion, plus 

the actual regional baseline signals themselves, were used to find the global 

segmentation threshold.   

 

Figure 4.6 Peak to peak filtered EMG signal and regional baseline estimate.  A peak to peak filter 
determined the peak to peak EMG value (red trace) in consecutive 32 point windows (10 ms).  
The regional baseline value (black trace) was next computed by finding the lowest value in fixed 
150 point (47 ms) consecutive windows. 
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4.3.1.2 Segmentation Phase 2 

To determine the global threshold, all regional baseline means were 

ordered from least to greatest.  Their corresponding standard deviations were 

arranged according to the order of the sorted means (Figure 4.7).   

 

 

The goal in finding the global threshold that represents the “quiet signal” 

was to find the location where the variability, or standard deviation, becomes too 

large.  A running standard deviation was calculated using the baseline signal 

values from each 3-minute EMG portion.  In Figure 4.8 for example, the first 

standard deviation point was the standard deviation of the estimated baseline 

value for the 3-minute EMG portion with the least variability (least baseline 

noise); the second standard deviation point is the standard deviation of the 

combined values of the estimated baseline signal of the first two 3-minute 
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Figure 4.7 Threshold selection method using recording from subject 1, distal channel.  The left pane 
shows the mean values of the regional baseline signal found in each 3-minute EMG portion sorted 
from least to greatest.  The right pane shows the standard deviations of those same EMG portions 
according to the sorted order from the left pane. 

Sorted Segment Means for the Subject 1 Recording 

Std. Devs for segments of the subject 1 
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portions, and so on, continually adding the next 3-minute baseline estimate to 

perform the computation.   

A running mean of this constructed signal was calculated simultaneously 

and the ratio of the running standard deviation to the running mean was 

computed.  When the ratio of the running standard deviation to its corresponding 

running mean changes abruptly, then a limiting point is found.  Figure 4.8 shows 

a plot of this ratio.   

 

 

This abrupt change represents the presence of reasonably sized MUAPs and 

thus the quiet signal baseline value.  After processing all 480 3-minute EMG 

portions from the four recordings, the best target ratio for the limiting point was 

1.2.  The mean estimated baseline signal value at the 3-minute EMG portion 

number where the limiting point occurs was used in conjunction with its 
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Figure 4.8 Ratio of the running standard deviation value to its mean.  In this example, there was a 
significant increase at around segment number 120, so this is the cutoff point.  The 120 3-minute 
EMG portions with the smallest baseline means were used to compute the mean and standard 
deviation to be used for the threshold for this channel. 
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corresponding standard deviation for a given channel’s global threshold. The final 

global threshold was the mean plus 2 standard deviations, a value commonly 

used in biological studies. 

 

4.3.1.3 Segmentation Phase 3 

Phase 3 of the segmentation procedure used the global thresholds 

obtained for each channel to segment motor unit potentials from each 3-minute 

EMG portion.  This phase operates on each channel’s data independently and 

also features noise rejection as will be described in section 4.3.1.4. 

During the segmentation process, the peak to peak signal was computed 

twice.  The first time the peak to peak signal was computed with 32 datapoint 

windows as it was done in phase one, but the second time it was done at a shift 

of 16 data points so that the two peak to peak signals overlapped (Figure 4.9).  

 

 

 

 

 

 

 

 

 Figure 4.9 Offset peak to peak filtered signals used in segmentation phase 3.  2 peak to peak filtered 
signals are computed from the EMG, with one offset from the other by 16 points (5 ms), or half a 
window, so that all potentials were found.  All potentials that were above the threshold (solid black 
trace) were segmented. 
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The offset peak to peak filtered signal was additionally utilized so that no 

potentials were missed due to the positioning of the 32 point windows.  In other 

words, overlapping windows would prevent the case that the full peak to peak 

value of a potential could be erroneously computed due to the positioning of the 

windows.  All regions of the peak to peak filtered signals that had values above 

the global threshold (black trace in Figure 4.9) were marked for inspection by the 

potential segmentation procedure. 

The potential segmentation procedure took each marked region and 

defined a candidate potential by locating the maximum positive amplitude value.  

Each candidate potential was aligned by centering its potential window at the 

minimum EMG amplitude value. This fiducial centering point was then used to 

construct a 71 data point window (22 millisecond time window) around each 

candidate for later classification (35 datapoints to the left and to the right of the 

centering point). If two potentials were segmented whose centerpoints occurred 

less than 35 datapoints apart, only the candidate potential with the larger peak to 

peak value was retained.   

The alignment criterion is crucial, for it critically affects the later stages of 

classification (as described in section 3.6.1).  The valley of each potential was 

selected as the fiducial point so that all 3-phase potentials (two positive phases) 

were aligned correctly. Every potential had a negative phase.  If the maximum 

peak of each candidate potential were chosen for alignment instead, ambiguity is 

introduced for three phase potentials: One positive phase may be slightly larger 

than the other in different potentials belonging to the same class or group.  In this 
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case, the valley would fall either to the left or right of the aligned maximum peak, 

depending on which positive potential phase is larger (Figure 4.10).  

 

 

 

 

 

 

The net effect would be that potentials belonging to the same class would be  

classified differently, simply due to the fact that their initial alignments were 

different. 

 The negative peak alignment helps remedy the situation in Figure 4.10, 

but problems arise when there are two negative phases.  To alleviate some 

problems that this introduces, all comparisons were done after candidate 

potentials and template shapes were optimally aligned (section 4.3.7).    

After each channel had been segmented, the candidate potentials of each 

channel were matched in time so that each candidate potential was a single 

entity with one representation in each channel.  When a candidate potential 

existed in one channel with no corresponding potential in the opposite channel, a 

Figure 4.10 Three phase ambiguity when aligning at peaks.  A) If 3 phase potentials are aligned at 
their peaks, one positive phase can be alternately larger than the other phase, even within the same 
class of potentials.  B) If the 3 phase potentials are aligned at their valleys, the relative size of either 
positive phase is inconsequential and the classification of these two potentials is straight forward for 
any classification algorithm. 
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new candidate potential was segmented in that opposite channel using the 

corresponding time window.   

 

4.3.1.4 Noise rejection 

 Noise that was incorrectly segmented was eliminated using two methods.  

The first method was frequency based and was done during segmentation, while 

the second compared what potentials were segmented with those that were not 

segmented. 

 The frequency based noise elimination procedure determined which 

segmented potentials were actually noise (noise potentials) by investigating 

frequency content.  The frequency spectra of motor unit potentials consisted 

mostly of low frequency components while noise potentials consisted mostly of 

high frequency components or had a flat frequency spectrum.  Noise potentials 

also had low maximum magnitudes in the frequency domain.  Figure 4.11 shows 

an example with two relatively small waveforms, one is noise while the other is a 

motor unit potential.   
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A large portion of the area beneath a motor unit potential’s frequency spectrum 

occurs below 310 Hz.  The percentage of area of the frequency spectrum below 

310 Hz was utilized as a noise elimination criterion.   

Figure 4.12 shows a scatter plot with area ratios (the area of the frequency 

spectrum below 310 Hz to the total area beneath the frequency spectrum, or in 

other words, an area percentage) plotted on the x-axis along with maximum 

magnitudes of the frequency spectrum plotted on the y-axis.  Each point 

represents one motor unit potential or one noise potential. 

Figure 4.11 Spectra of motor unit potentials and noise.  Not only will the percentage of area under 
the curve under 310 Hz be larger for true potentials than noise, but the maximum magnitude value 
for the true potential will be much larger than that of the noise. 
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Figure 4.12 shows that for most motor unit potentials, the percentage of area 

below 310 Hz was greater than 0.55.  The maximum magnitude value for most 

potentials was above 0.5.  Thus two thresholds were set – segmented noise that 

had spectral area percentages less than 0.55 and maximum magnitudes (of their 

frequency spectra) less than 0.5.  This frequency based noise elimination 

procedure is performed on each candidate potential as they were segmented.  A 

candidate potential was eliminated as noise only if it met the criteria above in 

both channels.    
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Figure 4.12 Scatter plot of area ratios vs. maximum magnitudes of frequency spectra for HR 16 
MIN 45 of the subject 1 recording.  Each point represents a potential.  Most noise lies beneath an 
area ratio value of about 0.55 and a maximum magnitude value of about 0.5. 
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The second noise elimination procedure was based on the distributions of 

the peak to peak values of EMG that were segmented versus the distribution of 

the peak to peak values of what was not segmented.  Figure 4.13 shows 

example distributions of the peak to peak values in both channels of a 3-minute 

EMG portion.  
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Figure 4.13 Histograms of the peak to peak values for the subject 1 recording, HR 16, MIN 
45.  The three traces in each plot represent distributions for the noise, the segmented 
potentials, and those potentials that were manually classified.  The “heels,” or the first relative 
minima after the peaks of the noise and segmented potential distributions are labeled. 
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The three traces in the figure consist of the peak to peak value histograms of the 

potentials that were segmented, the potentials that were manually classified, and 

windowed data that were not segmented (noise).  The noise distribution was 

computed by taking the peak to peak value of those EMG regions between 

candidate potentials that were segmented. 

The idea was to eliminate all of the segmented potentials whose peak to 

peak values lay within the noise distribution plus within the first peak of the 

segmented potential distribution.  This assumed that the first peak of the 

segmented potential distribution was also noise.  The actual threshold line was 

drawn depending on where the first peaks of both distributions end, or in other 

words, the right “heel” of the noise peak and the first peak of the segmented 

potential distributions.  The lower amplitude “heel” between the two was selected 

as the threshold for each channel.  For example, the heels of both histogram 

peaks in each channel are labeled in Figure 4.13.  Since the segmented potential 

heel was located at a peak to peak value of 18 µV and the noise heel was 

located at 12 µV, the distal channel threshold is chosen as 12 µV.  In the 

proximal channel, the threshold is chosen to be 18 µV because the noise heel 

value was less than the segmented potential heel value (21 µV).   

Only potentials with peak to peak values below the thresholds in both 

channels were eliminated.  In summary, this method used dynamic thresholds for 

noise elimination – the ability to adapt thresholds based on the EMG data that 

were recorded. 
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4.3.2 Artifact and Spasm Exclusion 

 Artifact is a form of large amplitude noise and arises from external 

interference, such as electric bed noise.  Spasms were also problematic in 

classification and in revealing the true nature of spontaneous motor unit activity.  

EMG during spasms typically results in an interference pattern when recorded 

using surface electrodes.  The automated classification algorithm was not 

designed for areas where there was too much EMG activity and no discrete 

observable potentials (Figure 4.14, bottom pane).  The automated classification 

algorithm was designed to classify discrete visible potentials as shown in the top 

pane of Figure 4.14. 

 

 

 

 

 

 

 

 

 

 

 

The observation of motor unit activity can be contaminated by the presence of 

spasms, even if visually classifiable potentials are close to spasm activity.  Two 

Figure 4.14 Classifiable vs. unclassifiable EMG examples. 
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methods were designed to exclude these EMG regions from consideration: An 

amplitude threshold method and a method that deals with the density of 

potentials in a region. 

The first method used a simple dual amplitude threshold.  All four 

recordings were visually inspected and it was found that EMG values with 

relative amplitude values of greater than 2.0 and less than -2.5 represented 

spasms or artifact.  The regions marked as artifact consisted of the locations 

where these thresholds were exceeded at the beginning of a stable baseline 

signal (Figure 4.15).   

 

 

 

 

 

 

 

 

 

 

 

The baseline was defined as a region that remained at a relative amplitude of +/- 

0.15 for at least 40 data points.  The regions marked as artifact were neither 

segmented nor classified. 

Figure 4.15 Spasms and artifact labeling.   The regions where the red trace assumes a non zero 
value were excluded from classification and segmentation.   The regions that are artifacted are 
indicated by values exceeding the amplitude thresholds of 2.0 and -2.5.  The artifact regions end 
where the EMG returns to a stable baseline.  The amplitude values in this figure are relative, 
meaning that the raw recorded logger signal was divided by 100. 

149.5 150 150.5 151 151.5 152 152.5 153 153.5 154 154.5

-5

-4

-3

-2

-1

0

1

2

3

4

Time (s)

A
m

p
lit

u
d
e

Artifacted EMG, Recording BA1, HR 6 MIN 51

EMG

Artifacted Regions

Artifacted EMG, Subject 1 Recording, HR 6 MIN 51 



74 
 

 The second method used to mark regions of EMG “overactivity” dealt with 

the endpoint values of segmented potentials on a per channel basis for each 3-

minute EMG portion.  A potential was temporarily marked as a spasm potential 

when it met one of two criteria.  The first was that the absolute values of at least 

one endpoint of a segmented potential exceeded the template endpoint 

threshold.  The second criterion involved the presence of a relative maximum or 

minimum that lay within several data points outside the edge of a potential’s 

window.  In Figure 4.16, the box drawn around the potential at the center of the 

figure shows the windowed potential that is temporarily marked as a spasm 

potential.   

At least one of this segmented potential’s endpoints exceeds the template 

endpoint threshold so it is temporarily marked as a spasm potential.  There are 

also relative maxima that exist within a few points of the edge of the potential’s 

window.  The template endpoint threshold was the largest absolute endpoint 

Figure 4.16 Possible spasm potential.  
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value of all the class template potentials in a 3-minute segment (Figure 4.17) 

(see section 4.3.3 for class template formation).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The top pane shows a collection of class template shapes for the distal channel 

of an EMG segment.  The bottom two panes show the magnified regions of the 

top pane.  The template endpoint threshold is the template endpoint that has the 

Figure 4.17 Template endpoint threshold for five class template shapes or the distal channel of an 
EMG segment. 

Class Template Shapes – Distal Channel (Subject 1, HR 16 MIN 48) 
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greatest absolute value.  This value indicated by the arrow on the bottom right 

pane and is approximately -18 microvolts.  If 10 consecutive potentials were 

marked in this manner, all of them were labeled as spasm potentials.  If there 

were less than 10 consecutive marked potentials, they remained untouched.  

 While the above method helped eliminate unclassifiable potentials within 

spasms, an additional automated method was created to identify the remaining 

spasms that contaminated discrete motor unit activity.  An expert manually 

identified spasms within the subject 1 recording to provide a gold standard, which 

was used to construct an automatic method to emulate the work of the expert 

spasm identifier.   

The automatic spasm identification method was based on finding regions 

where the area under the rectified EMG was greater than a certain threshold.  

Additionally, the area was normalized by the area beneath the average rectified 

template potential within the current 3-minute EMG portion.  Since peak spasm 

activity was largely marked with this method, time safety factors were added just 

before and just after the previously identified spasm regions to extend the spasm 

regions to encompass the entire contraction and were derived from the manual 

labeling of spasm activity in the subject 1 recording.  That is, the expert marked 

the spasm onset and end, as well as the quiet time prior to and after each spasm 

(pre-time and post time).  There were four different time safety factors attempted, 

each based on statistical measures of the pre-spasm times in the manually 

classified spasms (Table 4.4).   
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The pre-time was the time safety factor taken before the peak spasm onset to 

reduce spontaneous motor unit activity was included with spasm activity.  The 

post-time was the time safety factor taken after the peak spasm had occurred 

and was always chosen to be the average value of 1.48 times the pre-time.  

Table 4.5 shows the performance of the automatic method with different safety 

factor times with respect to the gold standard spasm locations.  Figure 4.18 

shows a graphical representation of the Table 4.5 data. 

 

 

 

 

 

 

 

 

 

 

Spasm 
Identification 

Removal Method 
Time Safety Factor Employed 

1 Median of pre-time values 

2 Mean of pre-time values 

3 Mean of pre-time values + 1 standard deviation 

4 Mean of pre-time values + 2 standard deviations 

Spasm 
Identification 

Removal 
Method 

% 
Correct 

Time 
correctly 

found 

Actual 
Spasm 
Time 

(seconds) 

Total 
Classified 
Potentials 
Lost (FPs) 

Total 
Spasm 

Potentials 
Missed 

1 49.4% 1781.71 3606.44 5456 11334 

2 58.2% 2099.30 3606.44 8495 9211 

3 69.6% 2511.38 3606.44 14033 6694 

4 75.7% 2731.29 3606.44 18612 5725 

Table 4.5 Automatic spasm identification procedure performance on the subject 1recording.    

Table 4.4 Different spasm pre-times for four different spasm removal methods.  There were four 
different pre-time values attempted based on statistical measures of the pre-spasm times for the 
manually classified spasms.  The pre-time was the time safety factor taken immediately before the 
peak spasm onset to ensure that no spontaneous motor unit activity was included with spasm 
activity. 
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Method 1 has the shortest time safety factors while method 4 has the largest time 

safety factor.  Even though method 4 has the highest percent correct, there were 

still large numbers of spasm potentials erroneously included (missed) and large 

numbers of false positives erroneously excluded. 
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Figure 4.18 Automatic spasm identification procedure performance on the subject 1recording (graph 
format).   The top pane shows the percentage of spasm times correctly identified by each of the 4 
methods.  The bottom pane shows the total classified potentials lost (false positives) and the total number 
of spasm potentials missed for each method.  Method 1 has the shortest time safety factors while method 
4 has the largest time safety factor.  Even though method 4 has the highest percent correct, there were 
still large numbers of spasm potentials erroneously included (missed) and large numbers of false positives 
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While these automated spasm identification procedures found different 

percentages of correct spasm regions, with method 4 the best, there were still 

large numbers of spasm potentials that were not identified and large numbers of 

false positive spasms.  Figure 4.19 illustrates how the automated spasm finding 

affected the histogram of the firing frequency for global class 6 from the subject 1 

recording, by plotting the histograms before any spasm potentials were removed, 

and after the spasm potentials identified by method 4 were removed. These 

histograms were normalized with respect to the number of potentials that 

belonged to global class 6. 

Figure 4.19 Automatic spasm identification effects on the firing rate histogram global class 6 in the 
subject 1 recording.  Three different normalized histograms were plotted: The output of the classification 
algorithm (blue), the classification algorithm output after the expert identified spasms have been 
removed (green), and the classification algorithm output after method 4 identified spasms have been 
removed (red).  The histograms were normalized with respect to the total number of potentials that 
belonged to global class 6.    
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Although 75 % of the correct spasm regions were found using method 4, the 

resulting histogram of global class 6 more resembled the original histogram 

without any spasms removed than it did the histogram with the gold standard 

spasm potentials removed.  This behavior was seen with the remaining global 

classes in the subject 1 recording as well.  Due to this behavior, the automated 

spasm identification procedure was not employed and instead an expert 

identified the spasms for the remaining recordings.  The automated spasm 

identification procedure could be further developed, however, and pursued as a 

future project.  

 

4.3.3 Clustering 

 Candidate potentials were clustered as part of the second phase of the 

automatic motor unit classification algorithm.  “Transitive clustering” was used to 

cluster potentials in each channel independently to form classes.  From this point 

on, the terms “cluster” and “class” are used interchangeably.  Both terms refer to 

groupings of potentials that are similar according to distance metrics.  These 

groups of potentials were produced by the same motor unit. 

 In transitive clustering, distance matrices were formed using all 

segmented potentials.  The distances from any given potential to all other 

potentials were computed using two distance metrics, the Euclidean distance and 

the correlation coefficient (here after referred to as simply the correlation).  The 

Euclidean distance is given by equation 4.2 and the correlation coefficient is 

given by equation 4.3. 
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In both equations, xn and yn are components of the vectors x and y which have N 

components and represent 2 different potentials.  σx and σy are the standard 

deviations of the vectors x and y, respectively, while x and y  are the means of 

the vectors.  All potential pairings that met the correlation and Euclidean distance 

thresholds of 0.95 and 0.25, respectively, were retained in a similarity list.  These 

threshold values were chosen because they produced clusters that were the 

most compact and distant from each other.  In other words, cluster members 

were the most similar to each other while cluster centers were furthest from each 

other.  The retained potential pairings were then transitively grouped according to 

their similarity list.  Table 4.6 shows an example similarity list and the classes 

that result. 

 

 

1 2 

1 3 

2 5 

4 6 

10 11 

Table 4.6 Transitive grouping example.  The table shows pairings of templates that are the same 
based on the Euclidean and correlation distance metrics. There are 3 colors that highlight the 
numbers, representing 3 different global classes that are formed by transitively grouping the list. 

Classes: 
Class 1: 1, 2, 3, 5 

Class 2: 4, 6 
Class 3: 10, 11 

(4.3) 

(4.2) 
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Transitive clustering is based on the transitive property (if A=B, and B=C, 

then A=C).  Since potential 1 is similar to potential 2 and 3, and potential 2 is 

similar to potential 5, then potential 1 must be similar to potential 2, 3, and 5.  

Class 1 then consists of potentials 1, 2, 3, and 5. The final two classes consist of 

potentials 4 and 6, and potentials 10 and 11, respectively.  The transitive 

grouping procedure found all matches between pairings over the entire 3-minute 

EMG portion. All clusters formed had to have at least 3 potentials to prevent 

noise from being incorrectly clustered.  Template potentials were then computed 

for each cluster by averaging all the potentials of each cluster (at the 3-minute 

level), to obtain the mean, or cluster centroid. 

 The last stage of transitive clustering refined the classes that were formed 

by comparing the distances between all clustered potentials.  Again correlation 

and Euclidean distance measures are used, but this time the Euclidean distance 

was normalized using the norm of the template potential (equation 4.4).   

 

)...( 22

2

2

1 Nxxxnorm +++=  

 

In equation 4.4, x1 through xN are the data points of the template potential, where 

N is the number of points in the template potential.  This way, Euclidean distance 

measures relative to the size of the potentials in question were used instead of 

an absolute distance measure.  Member potentials remained in a given class 

only if the potential correlated to at least 0.95 with all other member potentials 

(4.4) 
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plus was closer than 0.45 away from all other member potentials according to the 

normalized Euclidean distance metric. 

 The classes produced by the clustering method were extremely refined 

(using high thresholds) so that no misclassifications would be made.  The end 

result was that a unique class could be clustered as several separate classes.  

These separate classes were merged in a later stage of the classification 

algorithm.  Figure 4.20 shows a clustering example that has several motor unit 

classes found as individual classes (classes 2 and 12 would later be combined to 

represent the template for one motor unit class).   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Clustering stage output example.  Fifteen classes were obtained from clustering the 
subject 1 recording, HR 16 MIN 45.  The left side of each pane constitutes distal channel 
potentials while proximal channel potentials constitute the right side of each pane.  The result of 
each clustering may be that a unique class appears as several individual classes.  In this case, 
classes 2 and 12 represent the same class.  These classes will be merged by a later stage of the 
classification algorithm.  All amplitudes are in microvolts. 
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In the figure, the left side of each pane is distal channel potentials while the right 

side of each pane is proximal channel potentials.  The third and fourth passes of 

the classification algorithm performed the required merging so that one unique 

class is clustered as one individual class. 

 

4.3.4 Cross Channel Class Matching 

The cross channel class matching procedure matched the classes found 

in each channel independently to yield the net classes for a 3-minute EMG 

portion.  Since thenar fibers probably go from one end of the muscle to the other 

(Westling et al., 1990), and the EMG electrodes lay across the bellies of the 

muscles in a distal/proximal configuration, motor unit potential potentials were 

recorded simultaneously in the two channels so that each channel had a 

representation of a single motor unit potential.  However, the actual shapes of the 

potentials for any one motor unit were different between channels, due to the 

difference in the positioning of the recording electrodes and because the 

potentials traveled away from the motor end plates in opposite directions.   

In cross channel class matching, the classes in one channel were 

matched with classes in the opposite channel (Figure 4.21).   
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Both channels were clustered independently, yielding different cluster 

numberings between channels.  In most cases, each class in one channel had a 

direct match with a corresponding class in the opposite channel.  If there were no 

direct class match between channels, classes were retained based on distance 

metric thresholds.  For example in Figure 4.21, cluster 2 in channel 1 was paired 

with cluster 1 in channel 2, thus forming a (cluster 2/1 pairing).  Similarly, there is 

a cluster 3/4 pairing between channels 1 and 2.  Cluster 1 in channel 1 doesn’t 

correspond to a cluster in channel 2, as shown by the dotted blue rectangle.  The 

corresponding potential to the cluster 1 potential is unclassified.  Therefore, a 

new corresponding cluster is created in channel 1.   Corresponding member 

potentials in the opposite channel had to correlate to at least 0.95 with each other 

and have a normalized Euclidean distance closer than 0.5.  If the distance criteria 

were not met, the class was discarded.   

Figure 4.21 Cross channel template matching example.  Both channels were clustered independently, 
yielding different cluster numberings between channels.  Correspondences between clusters in each 
channel were then found. 
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There were some instances where a legitimate class existed in one 

channel, whereas the opposite channel had corresponding potentials that appear 

to be noise and failed the distance measure criteria (Figure 4.22).   

This exception was accounted for in the following way: Below a peak to peak 

potential value of about 22 µV, distance criteria were not used.  Although 

removing the distance criteria in this instance can produce misclassification 

problems later, it did enable the tracking of motor unit classes that were very 

stable in only one channel. 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Potential representation in one channel fails distance measures.  The above class has a 
repeatable, stable potential in the distal channel, while the proximal channel’s representation appears 
to be noise.  The noise-like potentials in the proximal channel fail the distance measure criteria.  In 
order for the above class to be correctly clustered and additional criterion is added.  Distance measure 
criteria are not applied if the peak to peak value of the class template potential is less than a threshold 
value. 
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4.3.5 Motor Unit Classification Viewing Software Package 

A comprehensive, user-friendly software package was created in order to 

view and modify classified EMG data at both the 3-minute segment level and the 

24-hour (global) level because no other available software packages are capable 

of handing these large data sets or analyzing all of these data at the single motor 

unit level.  For the same reasons, a user-friendly interface was also designed for 

manually verifying the tracking of templates over the 24-hour recording.  The 

viewing software was GUI based and written in Matlab 7.0 just as the processing 

software.   

 Individual 3-minute EMG segment viewing and modification was provided 

with a set of GUI tools developed in Matlab 7.0.  Figure 4.23 shows the front end 

of the viewing software package.  The primary purpose of this package was to 

allow a user to view the two channels of raw data and to evaluate the accuracy of 

the algorithm-based classification of motor unit potentials. 
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Many features were available to the user at the software front end.  The 

user could enter the pathname of a data file or browse for one using the standard 

windows interface.  A drop-down menu allowed the user to select a desired 3-

minute EMG portion by its time designation.  All 3-minute portions were 

numbered starting from midnight – 12 am was hour 1, minute zero (HR 1 MIN 0) 

while 11 pm was hour 24, minute 0 (HR 24 MIN 0).  All potentials modified by the 

user were stored in the excel file whose name is given by the text dialog box at 

the bottom of Figure 4.23.  Lines could be drawn on the distal and proximal EMG 

Figure 4.23 Front end of the classification viewing software package.  The viewing software allows 
for the viewing of entire EMG traces through DaDisp 2002, including the annotating of potentials and 
manual construction of superimposed potentials in order to resolve superpositions into their 
constituent classes. 
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traces denoting a noise threshold to be used in manual classification.  Their 

values can be set through the front end as well. 

The viewing program executed DaDisp 2002 to display the EMG traces for 

a given 3-minutes, plus the instantaneous frequency of the desired local class 

(set by the drop-down menu).  The instantaneous frequency had units of Hz and 

was simply the reciprocal of the time in seconds between potentials of the same 

motor unit class.  Figure 4.24 shows the DaDisp 2002 display window. 

 

 

Within the DaDisp display, potential classifications were annotated directly 

on the potentials themselves. The user could use DaDisp’s cursor feature to 

select potentials and mark them as noise or missed potentials.  These marked 

potentials could then be saved using the front end of the viewing software 

package. 

Figure 4.24 EMG traces displayed in DaDisp 2002.  DaDisp 2002 was used by the viewing 
software to display the distal and proximal EMG traces.  The classifications for these potentials 
are directly labeled on the plot.  DaDisp also features a cursor function that allows potentials to 
be marked as noise or missed potentials.  The vertical blue line represents the DaDisp cursor. 
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 More in-depth usage was accessible by clicking on the “Display Potentials 

by Class” button.  Figure 4.25 shows the available features from this submenu. 

The “Overlay Potentials by Class” button plotted a figure in which all potentials of 

the class selected by the drop-down menu were overlaid.  The potentials of a 

single class or all potentials could be printed.  The display info pane in the upper 

right corner of the window informs the user of the number of potentials that were 

classified as the selected class and how many windows it will take to display 

them individually by clicking on “Display Potentials by Class.”  This feature 

allowed the user to view the potentials of an entire class individually (Figure 

4.26).   

Figure 4.25 Display potentials by class window.  This interface featured more operations the user 
can use to view the classified EMG.  This includes viewing potentials individually and by class as well 
as printing out potentials. 
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From there, the user could view a given potential’s class and the time when it 

occurred.  The user could also click within one of the panes to pull up the 

interface in Figure 4.27.  

Figure 4.26 Viewing individual potentials window.  This display allows a user to view individual 
potentials, their classes, and the times at which they occurred.  Clicking on a window re-scales 
the x-axis of the EMG displayed in DaDisp so that the potential in the desired window is 
centered. 
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In this window, the user had a chance to re-classify the potential as one of the 

three nearest classes (with respect to either the distal or proximal channel), 

noise, or any other class using the drop-down menu.  The user could also 

determine if the current potential was a superposition using the applet shown in 

Figure 4.28. 

 

 

 

 

 

Figure 4.27 Re-classification window.  The window displays the currently selected potential as well 
as the 3 nearest class templates (with respect to either the distal or proximal channel).  The user can 
then classify the potential by clicking on one of the class buttons, or manually selecting the desired 
class through the drop-down menu on the right side of the window. 
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By clicking in the list box on the right side of the window, the user could 

sequentially select classes to use in building a superposition to match the current 

potential.  The top panes show the representations of the current potential in both 

channels and the net superimposed potential that was built to match it.  The 

middle panes show the previous residual while the bottom panes show the most 

current residual obtained from subtracting the most recent class template.  The 

distance measures of correlation and Euclidean distance are shown at the 

bottom of the window as the superposition is being built.  The user could click the 

“optimum choice” button at the lower right corner of the window to have the 

Figure 4.28 Manual superposition building applet.  This applet allows the user to select constituent 
potentials in order to build a superposition to match the target potential.  The top panes show the 
target potential and the constructed superimposed template in each channel.  The middle and bottom 
panes show the residual potential remaining after successive classes have been subtracted from the 
target potential. 
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applet select the class template that produces a constructed superposition that 

most matches the target potential. 

 If a potential already happens to be classified as a superposition, the 

following window is displayed (Figure 4.29).   

In this window, the lower panes show the positions of the constituent class 

templates as they were shifted to construct the superposition indicated by the 

classification.  All three of the previous windows contain spaces to add user 

comments which will be added to the excel file containing all classification 

changes. 

 

 

 

Figure 4.29 Superposition display window.  This window shows a potential that has been classified to 
be a superposition.  The bottom panes show the time shifts of the constituent classes required to 
build the superposition. 
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4.3.6 Motor Unit Template Uniting 

 The motor unit template uniting procedure was used to find all of the most 

active, stable motor units in each 24-hour recording.  These most stable motor 

units constituted the global classes of the recording.  This procedure involved 

three stages. The first stage clustered all the motor unit class templates local to 

each 3-minute portion to find the global classes.  The second stage classified the 

local classes within each 3-minute EMG portion as global classes, while the final 

stage searched for global classes that were not initially found in each 3-minute 

EMG portion. 

 

4.3.6.1 Motor Unit Template Uniting Stage 1 

In the first stage of the motor unit template uniting procedure, all motor 

unit class templates found in each of the 3-minute portion were clustered.    

Before clustering each pair of templates were aligned in time as described in 

section 4.3.7 so that any alignment errors using the most negative point of each 

potential would be minimized.  “Composite” template shapes were created by 

joining the distal channel templates to each corresponding proximal channel 

template.  Where before, each template consisted of 71 data points, each new 

combined template consisted of 142 data points.  Points 1 though 71 were the 

distal channel template, while points 72 through 142 were the proximal channel 

template (Figure 4.30). 
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Next, the transitive clustering routine was applied to all the composite 

templates using high correlation and Euclidean distance thresholds, 0.98 and 

0.5, respectively.  The high correlation value ensured that only the units with the 

most stable template shapes were considered for the clustering.  The transitive 

grouping procedure found all matches between pairings over the entire 24-hour 

recording. All global classes had to have at least five member templates so that 

only the more commonly occurring templates were retained for further 

consideration.  In other words, a global class had to appear in at least 15 minutes 

of the 24-hour EMG recording to be retained. 

 After transitive clustering, there were some resulting global classes that 

required merging.  This was done by giving the user the ability to form new 

Figure 4.30 Example composite templates.  Points 1 through 71 represent the distal template 
while the remaining points represent the proximal template. 
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groups and combine existing ones through a graphical user interface (GUI) 

program (Figure 4.31).   

 

 

 

 

 

 

 

 

 

 

 

 

 

After being presented with all the most commonly occurring class templates that 

the program found, the user has the ability to manually select global class 

templates which should be combined.  Figure 4.32 demonstrates a combination. 

 

 

 

 

 

Figure 4.31 GUI program to combine global classes.  A user can combine existing global 
classes using this program. 
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In Figure 4.32, Global classes 5 and 8 are identical and the user can combine 

them using the GUI program.  After all combinations have been made, another 

GUI program (Figure 4.33) allows the user to delete a global template group if it 

happens to be noise or incorrect in some way. 

Figure 4.32 An example of combining global classes with the GUI interface.  
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In Figure 4.33, Global Classes 3, 5 and 6 are noise and can be removed by 

selecting the “remove template” option on the GUI and clicking the “Next” button 

to proceed.  The output of the first stage of the motor unit template uniting 

procedure is a collection of global class templates.  An example is shown at the 

beginning of section 5.3. 

 

4.3.6.2 Motor Unit Template Uniting Procedure Stage 2 

The second stage of the motor unit template uniting procedure was then 

used to classify the local templates for every 3-minute portion as global classes.   

This was accomplished using fuzzy values to compare composite member 

potentials from each local class to the representative templates from each global 

class. Fuzzy membership values were computed using equations 3.5 and 3.6.   

 

Figure 4.33 GUI interface to remove incorrect global classes.  
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Pseudocode for the procedure is shown below (Figure 4.34).  Variables are in 

boldface. 

The representative global templates for each global class were those 

classified composite templates that occur closest to the 3-minute segment in 

question.  In other words, the second stage does comparisons based on nearest 

neighbor principles.  For example, the algorithm will search the hour 15, minute 

15 EMG segment for global class 10.  Global class 10 wasn’t initially found in this 

3-minute portion, but was found in hour 15, minute 51 and hour 15, minute 2.  

For n= 1 to 480 3-minute portions 
 For k = 1 to the total number of global classes 

Find the closest classified occurrence of global class k to 3-
minute portion n 
Store this composite class template in Temp_templates 

 End For 
 

For i = 1 to the number of local classes there are in 3-minute portion n 
 Store all member potentials of local class i in Temp_candidates 

Use equation 3.5 along with Temp_candidates and 

Temp_templates to compute fuzzy membership values, µwk 
where w is the potential number and k is the global class number 

Find the maximum value of  µwk  over each potential 
If any 2 maximum values > 0.7 for the same k, then 

Compute the Euclidean distance and correlation distance 
between each potential, w and the k from above 
If the distances meet the threshold then 

  Classify local class i as global class k 
 Otherwise 
  Do not classify local class I as any global class 

End if 
Otherwise 
 Do not classify local class i as any global class 

End if 
End for 

End for 

Figure 4.34 Pseudocode for the fuzzy membership method that classifies remaining local classes as 
global classes.  Variables are in boldface.  
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Thus, the class 10 template from hour 15, minute 3 was selected as the class 10 

representative template for the hour 15, minute 15 EMG portion.   

The matches achieved by stage 2 of the motor unit template uniting 

algorithm were verified manually for each recording with the help of two GUI 

programs. Figure 4.28 below shows the main interface for manually verifying the 

performance of the classification algorithm in the second stage of the motor unit 

template uniting procedure.   

 

 

 

 

 

 

 

 

 

 

The power of this interface is that it can create gold standards against which to 

evaluate the second stage of the global template matching procedure.   

Figure 4.35 GUI interface for verifying the second stage of the motor unit template uniting procedure.  
This GUI allows the user to inspect the performance of the motor unit template uniting procedure.  
The user can also view instantaneous frequencies of individual motor unit classes and overlay all 
global class templates.  All global class templates are displayed in the composite form of Figure 4.24. 
This interface can also save an excel file which contains corrections to the global template matching 
in order to create a gold standard that can be used to compute performances. 
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From this interface, the user can view instantaneous frequency plots of desired 

global classes in the desired 3-minute EMG segments as indicated by their times 

in hours and minutes, along with viewing overlays of all templates belonging to a 

global class.  All templates are displayed in the composite form as in Figure 4.36.   

 Gold standards can be created by selecting the “Show Segment 

Templates” button for each 3-minute EMG portion selected by the drop down 

menu and then making classification modifications as described in section 4.3.5.  

Figure 4.36 shows the window displayed after the “Show Segment Templates” 

button is clicked. 

  

 

 

Figure 4.36 Show segment templates window.  This window allows the manual inspection of the 
second stage of the motor unit template uniting procedure.  If only a green template is present, the 
motor unit class label was assigned during the clustering of all templates.  If a green template is 
overlaid on top of a blue template, the green template is the global class whose label appears in the 
upper left hand corner of the pane (as indicated by the unit number).  If only a blue template appears 
in a pane, then the global template matching routine could not find a global class label for that 
template.  Any window can be clicked to make an adjustment just like in Figure 4.26.  The clicking will 
bring up the interface in Figure 4.27 where changes can be registered. 
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This window displays the global class labels assigned to each template in 

the currently selected segment.  The presence of only a blue template in a pane 

(class 71 in Figure 4.36) denotes that the motor unit template uniting procedure 

could not assign any label to that template and it was left as unclassified. The 

presence of only a green template in a pane (class 70 in Figure 4.36) denotes 

that the global class label was assigned during the first stage of the motor unit 

template uniting procedure (template clustering).  A green template overlaid on a 

blue template (class 76 in Figure 4.36) denotes that the global class label 

indicated in the upper left hand corner of the pane was assigned to that blue 

template.  The green template is the averaged distal and proximal 

representations of that global class.     

The user has a wide range of options to make the necessary adjustments 

to the algorithm’s results.  The user has the ability to assign the correct global 

class label to a template if it were left unclassified.  This results in a missed 

classification.  If a template was assigned the wrong global class, the user has 

the ability to change it to the correct global class, thereby signaling a 

misclassification.  If a noise template were mistakenly assigned a global class 

label, generating a false positive, the user can change that label to unclassified. 

All changes made can then be saved to an excel file by clicking the “Save Excel 

File” button.  This excel file is then later used to build the gold standard for the 

second stage of the motor unit template uniting procedure.  This gold standard 

can be compared to the algorithm’s results to obtain performance percentages 
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that include those templates that were correctly labeled, those that were 

misclassified, those that were false positives and those that were missed. 

Changes could be made using the GUI in Figure 4.36 by using a mouse.    

Clicking on the desired pane yields the re-classification window.  This window is 

also a part of the motor unit classification viewing software package.  The 

interface is used as described in section 4.3.5 and can register global class 

modifications, whether they are noise or misclassifications.  

 

4.3.6.3 Motor Unit Template Uniting Procedure Stage 3 

 The third and final stage of the procedure found all global classes in each 

3-minute EMG portion that were not found by either the first stage of the global 

template matching procedure or the first pass of the overall classification 

algorithm.  It also combines any classes that were split erroneously. The routine 

similarly used fuzzy membership values, but this time they were computed for all 

potentials in each segment.  All potentials that had a fuzzy membership value 

greater than a threshold value of 0.8 for a given global class (and a correlation of 

at least 0.9 and Euclidean distance less than 0.8) were assigned to that class.  

All classes at the 3-minute level that were not assigned to any global class were 

retained for later classification so that superpositions would not be incorrectly 

labeled.  

 The third stage of the motor unit template uniting procedure was manually 

verified in order to produce a gold standard using a similar interface as shown in 

Figure 4.36.  The new interface is shown in Figure 4.37. 



105 
 

Each pane contains individual potentials that the classification algorithm has 

found for each global class and each overflow class (those classes that were 

found in excess of the global classes).  Modifications can be made as described 

previously by clicking on a pane of interest.  The “Previous Window” and “Next 

Window” buttons can be used to navigate through all 480 3-minute segments of 

each 24-hour recording.  Changes can once again be saved by clicking on “Save 

Excel File” in the lower left corner of the window. 

Figure 4.37 GUI interface for manually verifying the third stage of the motor unit template uniting 
procedure.  This window is used to manually verify the third stage of the motor unit template uniting 
procedure.  Each pane displays member potentials found for each global class.  Changes can be 
made by clicking on panes as previously described.  Changes must be made if a pane contains 
potentials that do not belong to a global class, indicating a misclassification, or if a pane belonging to 
an overflow class contains potentials that in fact belong to a global class, indicating splitting error. 
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 The user’s objective is to make sure that each global class correctly 

contains the appropriate individual potentials that are members of each specific 

global class.  The user must subjectively decide if a majority of overlaid individual 

potentials (as in Figure 4.37) belong to the assigned class or not.  If a pane 

contains potentials that do not belong to a particular global class, but do belong 

to a different global class, the user can use the re-classification window to make 

a change to indicate a misclassification.  If a global class’ pane contains noise or 

unclassifiable potentials, the user must label this global class as unclassified, 

thus making this error a false positive. 

A splitting error can result if global classes were not recombined during 

this third stage of the motor unit template uniting procedure.  The net result is 

potentials that should have been classified are missed.  For example in the 

interface of Figure 4.37,  if a global class correctly contains the appropriate 

member potentials, but a class that is not being tracked (overflow class) also 

contains the same member potentials, the user must click on the overflow class’ 

pane and record which global class it actually is.   

 

4.3.7 Unsorted Potential Analysis 

 Unsorted potential analysis was the last stage of the automatic 

classification algorithm.  In this stage, all unclassified potentials in each 3-minute 

EMG portion were compared with the global class templates found by the global 

template uniting stage in order to obtain a classification.  A potential had to meet 



107 
 

distance criteria when compared with the target class templates in both channels 

in order to be classified: 

1) Correlate to at least 0.94 and have a Euclidean distance of less 

than 0.5 with the target class template 

2) Correlate to at least 0.85 and have a Euclidean distance of less 

than 0.7 with the target class template of the opposite channel. 

If a potential doesn’t correspond to a single global class, the superposition 

resolution algorithm (described in Figure 4.41) attempted to resolve the potential 

into its constituent global classes.  The pseudocode in Figure 4.38 below shows 

the details of the unsorted potentials analysis. 
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For n =1 to 480 3-minute portions 
 For i = 1 to as many unclassified potentials in 3-minute portion n 
  For k=1 to as many global classes that there are 
   For both the distal and proximal channels 

Cross-correlate the unclassified potential i and global 
class k. 
Slide unclassified potential i to the lag value that 
maximizes the cross-correlation function. 
Compute the correlation coefficient and Euclidean 
distance (normalized to the norm of the global class 
template) between the global class k and shifted version 
of unclassified potential i. 

   End For 
  End for 

Find the global classes for which the distance measures meet the 
thresholds of 0.94 correlation and 0.5 Euclidean distance. 
If the thresholds are met in both channels, 

If there are multiple global classes that meet the threshold, then 
Label the unclassified potential using the global class of 
the smallest Euclidean distance measure. 

   Otherwise, 
Label the unclassified potential as the global class 
whose distance measure meets the threshold. 

   End if 
Else if the thresholds are only met in 1 channel for global class k, then 

Check the correlation and Euclidean distances of that 
unclassified potential with global class k in the opposite channel. 
If the thresholds of 0.85 correlation and 0.7 Euclidean distance 
are met, then 
 Label the unclassified potential as global class k 
Otherwise, 

Check to see if this unclassified potential is a 
superposition. 

   End if 
  Else no thresholds are met, 

Check to see if this unclassified potential is a superposition
 . 

End if 
If no classification is found in the first pass, then 

Repeat the above procedure after applying an attenuation 
window to unclassified potential i 

  Else if no classification is found in the second pass, then 
   Leave unclassified potential i unclassified 
  End if 
 End For 
End for 

Figure 4.38 Pseudocode for the unclassified potential analysis.  The pseudocode in the figure 
classifies the remaining unclassified potentials throughout each 3-minute portion of a 24-hour 
recording. Variables are in boldface.  
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In order to resolve the superimposed potentials into their constituent 

global classes, a modified dual channel peel-off method [Stashuk, 2001] was 

employed.  Cross-correlation was used to find the correct shifts at which to add 

the template class potentials in order to best reconstruct the target superimposed 

potential.  This technique could accomplish superposition resolution due to the 

fact that superpositions are the algebraic summations of motor unit potentials 

that occur nearly simultaneously [Day SJ and Hulliger M, 2001].   

The alignments of all potentials were changed so that timing information 

could be used in the superposition resolution procedure.  The exact times that 

potentials occur were vital in correctly resolving a superposition.  The time shifts 

required to build a superimposed template must be the same for both channels, 

so that a superimposed template was constructed in the same manner as it was 

produced physiologically.   

The alignment was changed so that both the distal and proximal 

representations for a potential were aligned in time (Figure 4.39).   

 

 

 

 

 

 

 

 
Figure 4.39 Time alignment of potentials.  Before the superposition resolution procedure, potentials 
were aligned in time.  In this case, the proximal channel’s potential is realigned (red window) because 
it had a smaller peak to peak value than the distal channel’s potential. 
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The channel whose potential representation had a larger peak to peak value 

remained unchanged.  The other channel’s representation was shifted so that its 

window had the same endpoints in time from the raw EMG as the unchanged 

representation.  Figure 4.40 shows a close-up view of Figure 4.39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The original segmentation of the same potential in each channel is shown in the 

top pane, while the bottom pane contains the re-aligned potentials so that the 

potentials were segmented in the way they were produced physiologically.  Time 
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Figure 4.40 Segmentation in time alignment.  The top panes show the same originally 
segmented potential in the distal and proximal channels.  The bottom panes show the same 
potentials with new segmentation based on time alignment.  Both bottom pane windows have 
the same endpoints in time.  These endpoints are from the potential in the distal channel 
because it has a greater peak to peak value. 
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aligning in this way can unfortunately produce errors when the distal and 

proximal channel representations of a potential are similar in peak to peak 

amplitude (see section 6.4).  Figure 4.41 shows pseudocode for the 

superposition resolution routine.  Variables are in boldface. 

Initialize Peel-off potential(1) = current unsorted candidate, distal channel representation. 
Initialize Peel-off potential(2) = current unsorted candidate, proximal channel representation. 
Initialize NewTemplate(1) = 0 
Initialize NewTemplate(2) = 0 
For n = 1 to 3 total global classes to build a superposition 

For k = 1 to as many global classes as there are in the current 3-minute record 
  For i = 1 to 2 channels  

Initialize TemplateBuilder(k,i) to NewTemplate(i) 
Initialize Residual (k,1) to Peel-off potential (i) 
Cross-correlate the global class template k with Peel-off potential(i). 
Find the lag value corresponding to the maximum of the 
crosscorrelation function.   
Store in BestLag. 
Shift global class template potential k, –BestLag points. 
Store –BestLag in TemplateShifts(k,i) 
TemplateBuilder(k,i) =TemplateBuilder(k,i) + shifted global class 
template k.   
Residual (k,i)=Residual (k,i) – shifted global class template k. 
Compute the correlation of shifted global class template k with Peel-off 
potential (i) and store in correlations(k,i) 

End For 
End For 
Find the largest correlation within correlations(k,i) and save K and I as the location of the 
largest value. 
Peel-off Potential(I)=Residual(K,I) 
NewTemplate(I)=TemplateBuilder(K,I) 
Use the shifts from TemplateShifts(K,I) to shift global class K in the opposite channel 
and build NewTemplate(i). 
Peel-off potential (i), where I is the opposite class of I, = Peel-off potential(i)-
NewTemplate 
Compute the correlation and Euclidean distances between the target potential in both 
channels, and NewTemplate(1) and NewTemplate(2) 
Save K in SuperpositionClassList 
IF n >=2 

IF the correlation in 1 channel is > 0.94 AND euclidean distance<0.5, while the 
other channel is >0.80 in correlation and <0.6 in Euclidean distance then, 

Label the target potential as a superposition with the classification of 
SuperpositionClassList 

  Else 
   Continue, and try to add a 3

rd
 global class to form a superposition 

  End If 
End IF 

End For 

Figure 4.41 Pseudocode for dual channel superposition resolution.  The algorithm for dual channel 
superposition resolution is shown here, with the variables in boldface.  This procedure also attempts 
to find doublets, or superpositions involving the same global class.  If no classification is found, the 
input potential is left unclassified. Variables in the pseudocode are in boldface. 
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When a second global class was used to build a superposition, the presence of 

doublets, or superpositions of the same class, were also checked.  In order for a 

potential to be a doublet, each constituent potential involved in the doublet had to 

be spaced at least 3 ms (9 datapoints) apart.  Doublets do not occur at spacings 

less than this. 

Dual channel superposition resolution was limited to find a maximum of 3 

constituent global classes within a superimposed potential.  This was because 

any waveform can be constructed with a large number of template shapes and 

misclassifications could result. 

 If an unclassified potential still did not obtain a global class label after 

these comparisons and superposition resolution attempts, the same procedure is 

repeated after an attenuation window is applied to the unclassified potential.  A 

Kaiser window with a beta value of 5 served as the attenuation window (Figure 

4.42). 

 

Figure 4.42 Kaiser window.  A Kaiser window with a Beta value of 5 served as the attenuation 
window. 
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The beta value controls the width of the window.  Larger values of beta made 

wider Kaiser windows and wider sidelobes.  The attenuation window preserved 

the center of the potential while attenuating the potential edges by multiplication.  

The attenuation operation acts to increase the correlation and reduce the 

Euclidean distance measures in hopes of achieving a classification.  This window 

was selected because it most optimally helped improve the classification when 

the algorithm performance was checked against a gold standard classification. 

 

4.3.8 Periodic Motor Unit Classification 

 Although most of the motor units in these recordings fired erratically, those 

that fired periodically could be classified by using the inherent timing information 

in an additional classification stage.  The periodic motor unit classification 

method defined ON regions for periodically firing classes in order to obtain a list 

of eligible classes that could be assigned to unclassified potentials.  All 

unclassified potentials that occurred at appropriate times with respect to the 

periodically firing units were then attempted to be classified using less stringent 

distance thresholds. 

 The first step in the method was to find the regions in which each motor 

unit class was ON.  The instantaneous frequency (equation 4.5) for a class is 

simply the frequency representation of the set of interpotential intervals, or the 

reciprocal of the time between the occurrences of each potential within the motor 

unit class. 

k

Nk IPIIPIIPIIF }/1,.../1,/1{ 21=  (4.5) 
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In equation 4.5, IFk is the instantaneous firing frequency for motor unit class k.  

IPI1 is the interpotential interval, or the time in seconds between the first and 

second potentials in motor unit class k.  IPIN is the interpotential interval between 

the last pair of potentials in motor unit class k.  Figure 4.43 shows a plot of 

interpotential interval versus its corresponding instantaneous firing frequency. 

 

 

 

 

 

 

 

 

 

 

The ratio of the mean motor unit class firing rate to all of its instantaneous 

frequency values was utilized to define whether the motor unit class was periodic 

and determine ON regions (Figure 4.44).   
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Figure 4.43 Example instantaneous firing frequency vs.interpotential interval number.  The 
instantaneous firing frequency is plotted against the motor unit class potential number. 
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In Figure 4.44, each point represents the mean firing rate for a motor unit class 

divided by its corresponding instantaneous frequency value.  The periodically 

firing regions are those where the ratio values are closest to 1 and are easily 

seen in this representation.   The large ratio values represent regions in which 

the periodic firing stops momentarily. 

The mean of the ratio values was then calculated after all ratio values 

greater than 20 were removed.  If this resulting ratio mean were less than 1.8, 

the motor unit class was considered to be periodic in the local 3-minute EMG 

portion. The ON regions within that 3-minute portion were defined to be the 

consecutive potentials whose mean firing rate-to-instantaneous firing frequency 

ratio values were less than 20.  Figure 4.45 shows the instantaneous frequency 

plot with the ON regions for a motor unit class indicated by the dotted red lines. 

 

 

Figure 4.44 Mean firing rate to instantaneous firing frequency ratio.   
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The next stage of the periodic motor unit classification method determined which 

unclassified potentials were eligible for comparison with periodic motor unit class 

templates.  An unclassified potential was eligible for comparison to a periodic 

motor unit class if it occurred when the corresponding instantaneous frequency 

value in that region (extended between the closest relative potentials in the 

periodic motor unit class) was less than 75 % of the mean firing frequency for 

that class (Figure 4.46).   
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Instantaneous Firing Frequency for Motor Unit Class 7, HR 11 MIN 45

IF

ON Regions

Figure 4.45 ON regions of periodically firing motor unit class.  The blue trace is the instantaneous 
frequency of motor unit class 6 of the subject 1 recording for a 3 minute EMG segment.  The dash-
dotted red line indicates the ON regions for the motor unit class over the 3 minute segment. 

Figure 4.46 Attempting to classify unclassified potentials as a periodically firing motor unit class.  
The blue trace is EMG while the black trace is the instantaneous firing frequency whose units in Hz 
are indicated by the scale on the right.  The EMG amplitude scale is on the left.   
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For example in Figure 4.46, class 7 was determined to fire periodically.  The 

times in which the instantaneous firing frequency was less than 75 % of the 

mean firing rate (5.87 Hz in this case) are indicated by the red arrows on the 

figure.  These are the regions where unclassified potentials (those labeled with a 

zero) are attempted to be classified as the periodic motor unit class. 

If an unclassified potential was within a region where more than one motor 

unit class was ON, then superpositions were constructed using all eligible 

periodic motor unit classes.  Correlation coefficients were computed between the 

target unclassified potential and all eligible classes and constructed 

superpositions.    

Two conditions had to be met for a positive match.  The correlation 

between the template potential in at least one channel with the unclassified 

potential had to be greater than 0.9.  The two instantaneous frequency values 

created from classifying the target potential both had to be less than 1.75 times 

the mean firing frequency of the class assigned to the unclassified potential. 
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Chapter 5: Results 

5.1 Segmentation Performance 

 The segmentation routine was evaluated by comparing the potentials that 

were segmented by the algorithm against those segmented by an expert in EMG 

recognition. Segmentation of five 3-minute sections from one 24-hour recording 

shows that 93.7% of the motor unit potentials (n=10,455) were correctly 

segmented and 6.3% of potentials were missed (n=699).  Only 250 potentials 

were erroneously segmented (false positives; Figure 5.1)  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 below shows an overlay of discernible potentials that were not 

segmented at all because they were eliminated by the frequency based noise 

elimination method.  

 

Figure 5.1 Segmentation performance percentages for 5 3-minute EMG portions.  The 
percentages of correctly segmented, missed, and false positive potentials segmented are shown 
for 5 different 3-minute EMG segments for the subject 1 recording. 
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Even though these potentials were visible, their peak to peak amplitude was only 

10 µV.  They were largely within the baseline noise.  With the current amplitude 

resolution these potentials could not be classified reliably by the algorithm or by 

an expert classifier. 

To further examine the consequence of the noise thresholds on 

segmentation, the noise thresholds settings were lowered to segment all of the 

manually identified potentials.  A reduced noise threshold increased the number 

of segmented potentials from 682 to 720, but the number of erroneous noise 

potentials increased from 40 to 641 (Table 5.1). 

 

 

 

 

Figure 5.2 Overlays of motor unit potentials not segmented in 3-minute record HR 8 MIN 51 of 
the subject 1 recording after frequency based noise elimination was applied.  
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Thus, the 6% of the total potentials that was gained by lowering the noise 

elimination thresholds induced a 1600 % increase in the amount of noise 

segmented and there was almost as much noise as there were motor unit 

potentials.  Given an expert could not manually classify the new potentials with 

confidence and the large increase in the noise that was segmented, we decided 

to leave the noise elimination thresholds at the original level to minimize noise 

segmentation. 

 

Noise 
Threshold 

Setting 

% 
Found 

Actual 
Potentials 

Segmented 

Actual 
Potentials 

Total 

Actual 
Potentials 

Missed 

Noise 
Potentials 

FP % 
(Noise 

Potentials) 

Original 94.7% 682 720 38 40 5.5% 

Lowered 
thresholds 

100.0% 720 720 0 641 47.1% 

Table 5.1 Noise thresholds and noise segmented for 3-minute portion HR 8 MIN 51 of the subject 1 
recording.  The frequency based noise elimination thresholds were unchanged for the “original” 
setting (described in section 4.3.1.4).  The “lowered thresholds” had the elimination thresholds set 
so that all 720 actual potentials would be found.  The tradeoff for segmented all actual potentials is 
an increased number of noise potentials segmented.  The “Lowered thresholds” setting segments 
almost as much noise as there are actual potentials. 
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5.2 Noise Elimination Procedure Based on Peak to Peak Value 

 The noise elimination thresholds for all four recordings changed little over 

the entire 24-hour recording (Figure 5.3). 

 

 

 

 

The noise elimination thresholds ranged from about 7 µV to17 µV. The distal 

channel noise elimination thresholds for the subject 1, subject 2, and subject 3 

recordings were on average 4, 3, and 3 µV less than that of the proximal 

channel.  The threshold for the subject 4 recording was about 4 µV more than 

that of the proximal channel on average.  This illustrates that the proximal 

channel generally had more noise than the distal channel.  

Figure 5.3 Distal channel noise elimination thresholds for four recordings.  Noise elimination 
thresholds in microvolts in the distal channel were computed for four gold standard 3-minute EMG 
portions in each of four recordings.  They were plotted against the time of the segment in which 
they occurred.  These distal channel noise elimination thresholds for the subject 1, subject 2, and 
subject 3 recordings were on average 4, 3, and 3 microvolts less than that of the proximal channel.  
The threshold for the subject 4 recording was about 4 microvolts more than that of the proximal 
channel on average. 
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 For all 4 subjects (16 manually classified 3-minute EMG portions), the 

number of potentials segmented ranged from 307 – 5385 (mean =2727, standard 

error = 360).  Of these potentials, 1-4639 (mean 1102, standard error = 293) 

were eliminated based on the comparative peak to peak noise elimination 

method.  The potentials that were eliminated were further categorized into those 

that were labeled as noise (0-3131, mean = 434, standard error = 208), labeled 

as unclassified (0-4637, mean =646, standard error = 227), or actually assigned 

a class (0-123, mean = 21.5, standard error = 7.7).  Thus very few potentials that 

were assigned a class were actually eliminated, while much greater numbers of 

unclassifiable potentials were eliminated. 

  Figure 5.4 shows the percentage of segmented potentials eliminated per 

subject and the percentage of classified potentials that were eliminated (with 

respect to all eliminated potentials). 
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The mean and standard errors (mean, standard error) for the percentages of 

overall potentials eliminated for the subject 1, subject 2, subject 3, and subject 4 

recordings were (23.3%, 7.1%), (1.4%, 1.1%), (17.5%, 6.8%), and 

(59.5%,16.3%), respectively.  Similarly, the mean and standard errors (mean, 

standard error) for the percentages of classified potentials eliminated the subject 

1, subject 2, subject 3, and subject 4 recordings were (2.5, 2.3%), (12.5%, 25%), 

(17.5%, 26.4%), and (4.1%,5.3%), respectively.  The small percentages of 

classified potentials eliminated illustrate the success of the noise elimination 

routine based on comparative peak to peak value in eliminating very few 

Figure 5.4 Percentages of potentials eliminated during the noise elimination routine.  Results of 
potential elimination for 16 manually classified segments throughout the 4 recordings on a per 
recording basis.  The percentages of segmented potentials that were eliminated per recording are 
shown in blue.  The percentages of classified potentials that were eliminated with respect to all 
potentials eliminated are shown in red. 
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potentials that could actually be classified.  Further, the classified potentials that 

were eliminated were not global classes. 

 

5.3 Motor Unit classes Tracked Over 24-hours 

Global classes, or the motor unit classes tracked over 24 hours, were found 

for each recording.  Figure 5.5 shows the templates in both the distal and 

proximal channels that represent the global classes found for the subject 3 

recording. 
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Figure 5.5 Global class templates found for the subject 3 recording.  When transitive grouping 
was applied to the templates found in each of the 480 3-minute segments for the subject 3 
recording, these 16 classes of potentials were found to be the most stable and commonly 
occurring.  The left side of each pane shows distal channel templates while the right side shows 
proximal channel templates.  Amplitude units are in microvolts on the y-axis and the time units on 
the x-axis are in milliseconds. 
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The templates varied in duration, polarity, amplitude and shape, thus providing 

many features to aid in classifying individual potentials.  There were a total of 22, 

7, and  8 global classes found for the subject 1, 2 and 4 recordings, respectively 

for a total of 53 global classes overall.  Figure 5.6 shows a cumulative distribution 

for the peak to peak amplitudes for the templates of all global classes found and 

sorted in order of the distal template peak to peak values from least to greatest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Sorted global class template peak to peak amplitudes.  The peak to peak values of all 
global class templates were sorted from least to greatest according to the amplitudes of the distal 
channel’s templates.  The top pane shows the distal channel global class template amplitudes.  
The lower pane shows the peak to peak amplitudes of the proximal channel’s global class 
amplitudes also sorted according to the amplitudes of the distal channel’s templates. 
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The global class template peak to peak amplitudes varied from 22 to 368 µV 

(mean = 81 µV, standard error = 9 µV ) in the distal channel and from 9 to 408 

µV (mean = 66 µV, standard error = 10 µV) in the proximal channel.  Global 

classes from each subject included both small and larger amplitude potentials 

suggesting that the algorithm was able to select a wide range of potentials for 

classification across recordings. 

Figure 5.7 shows a similar plot of the signal to noise ratios for all global 

class templates.  The peak to peak noise amplitudes were taken to be double the 

global thresholds computed at the end of the segmentation procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7 Sorted global class template signal to noise ratios.  The signal to noise ratios of all 
global class templates were sorted from least to greatest according to the amplitudes of the distal 
channel’s templates.  The top pane shows the distal channel template signal to noise ratios.  The 
lower pane shows the signal to noise ratios of the proximal channel’s global class templates also 
sorted according to the amplitudes of the distal channel’s templates. 



127 
 

Since the plots in Figure 5.7 are scaled versions of those in Figure 5.6, the 

baseline noise is similar across recordings.  The global class signal to noise 

ratios varied from about 1.8 to 31.2 (mean = 6.9, standard error = 0.77) in the 

distal channel and from 0.64 to 31.6 (mean = 4.95, standard error = 0.73) in the 

proximal channel. 

 

5.4 Classification Performances 

An EMG expert classified 12 minutes of data from each 24-hour recording 

by using the GUI-based viewing tools described in section 4.3.5.  Some global 

classes were only occasionally active so there is less confidence in their 

analysis.  When there were less than 10 member potentials for a given global 

class in the 12 minutes of data, additional 3-minute records were analyzed to 

provide additional potentials belonging to those given global classes.   

The classification performance was based on 5 parameters.  The percentage 

correct was the percentage of manually classified potentials that were correctly 

labeled by the classification algorithm.  The missed percentage was the 

percentage of the manually classified potentials that were left unclassified.  The 

misclassified percentage is the percentage of potentials that were assigned an 

incorrect global class label, and the false positive percentage was the percent of 

potentials that were assigned a global class label when they instead should have 

been left unclassified.  Finally, the percent accuracy for a given global class was 

the percentage of potentials that were correctly classified with respect to all 

potentials assigned that given global class label (equation 5.1). 
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In equation 5.1 c

correctN is the number of correct classifications of potentials 

for a given class “c.” c

missedN is the number of classifications missed, c

iedMisclassifN is 

the number of misclassified potentials, and c

ivesFalsePositN is the number of false 

positives for that given class “c.”  Figure 5.8 shows a cumulative percentage plot 

of the percent correct, false positive percentage (FP %), percent misclassified, 

and percent accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Over all global classes for each recording, the percent correct ranged from 60.0 

to 100.0% (mean = 96.0%, standard error = 1.1 %), the false positive percentage 

ranged from 0 to 61.9% (mean = 10.3%, standard error = 1.7%), the percentage 
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Figure 5.8 Sorted individual potential classification performances.  The percentage correct for all 
global classes for all recordings were sorted then plotted.  This order was then applied when plotting 
the false positive percentage, percent misclassified, and the percent accuracy. 
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missed ranged from 0.0 to 10.5 % (mean = 1.8 %, standard error = 0.4 %), and 

the percentage misclassified ranged from 0.0 to 40.0 % (mean = 2.5 %, standard 

error = 1.0 %).  The percent accuracy ranged from 38.1 to 100.0 % (mean = 

86.4%, standard error = 1.9%).   

Figure 5.8 shows that the accuracy is primarily determined by the false 

positive percentage.  The percent correct was plotted against the false positive 

percentage in order to investigate their relationship (Figure 5.9). 

 

 

 

 

Figure 5.9 Individual potential classification performances of % correct versus false positive %.  The 
% correct in individual classification performance was plotted against the false positive % for all global 
classes in all recordings.  The lavender line divides the figure into 4 quadrants that represent low false 
positives with low percent correct, low false positives with high percent correct, high false positives 
with low percent correct, and high false positives with high percent correct.  The dividing lines for 
these quadrants are 85 % correct and 30 % false positives. 
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Figure 5.9 was divided into 4 quadrants representing the possible 

combinations of low and high percent correct coupled with a low and high false 

positive percentage.  The dividing lines for the quadrants were about 85% correct 

and 30% false positive.  The individual classification performances for a majority 

of global classes across all recordings existed in the high percent correct, low 

false positive percent quadrant (47 out of 53 or 88.7 %).  Only 1 individual class 

(1 out of 53, 1.9%) had a classification performance that fell into the low percent 

correct and high false positive percentage quadrant, but 2 fell into the low 

percent correct, low false positive percentage quadrant (2 out of 53, or 3.8 %).  

Finally, the high percent correct, high false positive percentage quadrant 

contained 3 individual classification performances (5 out of 53, or 5.7%).   

Across all the recordings, the individual classification performances for the 

global classes were similar.  Two performances for the global classes of the 

subject 3 recording fell outside the high percent correct, low false positive 

quadrant (2 out of 15, or 13.3 %). Only 3 global classes for the subject 1 

recording (3 out of 23, or 13.0 %) and only 1 global class from the subject 2 

recording (1 out of 8, or 12.5 %) fell outside the quadrant with the best 

performance. The performances of all 7 classes for subject 4 were within the high 

performance group. Overall, these results revealed that the automatic 

classification algorithm can classify more than 88 % of the global classes over all 

recordings with a performance of at least 85% correct with a false positive 

percentage of less than 30 %. 
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The signal to noise ratios of each global class template over all recordings 

were plotted against the percent accuracy of the individual classification 

performance (Figure 5.10). 

 

 

According to Figure 5.10, the signal to noise ratio has no obvious relationship to 

the percent accuracy.  The accuracy seems to be independent of the signal to 

noise ratio for each recording 

 Potentials that are superpositions were more difficult for the automated 

classification to accurately classify.  The percent accuracies were compared 

when superpositions were included in the performance calculation and when they 

were excluded (Figure 5.11).   

Figure 5.10 Signal to noise ratio vs % accuracy in individual potential classification performance.  
The signal to noise ratio for each global class template was plotted against its respective % 
accuracy in individual potential classification. 
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In Figure 5.11, the upper half of the triangle (above the black unity line) 

represents the region in which the percent accuracies were greater with the 

superpositions excluded.  The accuracies for almost all global classes were 

better when superpositions were excluded.  Superpositions were harder to 

correctly classify, thus explaining the reduction in accuracy.  Overall, the average 

reduction in accuracy when superpositions were included was 7.4%, ranging in-

between -4.9% to 40.5% (standard error = 1.3%).  In general, recordings with a 

higher number of global classes (Subjects 1 and 3), and thus the opportunity for 

more superpositions, showed greater increases in accuracy when superpositions 

were removed. 

Figure 5.11 Percent accuracy including superpositions versus without superpositions.  The % 
accuracies for each global class of each recording including superimposed potentials were plotted 
against the corresponding % accuracies excluding all superimposed potentials.  The unity line 
(black line) was included for comparison. 
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5.5 Global Class Tracking 

 The final output of the motor unit potential classification algorithm 

consisted of the times during which each was active.  An ON time for a global 

class was defined to be a 3-minute region in which there was at least one 

member potential.  Figure 5.12 below shows a graph of ON times for each 

globally tracked class in the subject 3 recording.  Hour 0 is midnight to 1 am 

while hour 23 is from 11 pm to midnight.  Subject 3 took no medications during 

the recording.  The gray shaded regions indicate the times when the subject was 

sleeping.  An expert manually labeled spasm regions in all four recordings and 

these regions were excluded from further analysis. 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 ON regions for the subject 3 recording.  The classes are labeled on the y-axis while the time 
is labeled on the x-axis in hours.  According to the timing standard, hour 0 is midnight to 1 am and hour 
23 is 11 pm to midnight.  A solid line represents an ON region for a particular class, or a 3 minute span of 
time when there is at least one firing of that motor unit.  The absence of a solid line shows that that 
particular unit was OFF.  Spasm times that were manually labeled by an expert classifier were removed 
before compiling this graph. 
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The global classes were labeled on the y-axis while the time in hours is 

labeled on the x-axis.  A solid line for a class represents an ON region and the 

absence of a solid line indicates that a class was off.  Dots in the figure signify 

ON regions that are approximately 3 minutes in length. 

In the subject 3 recording, global classes 2, 4, and 11 were almost always 

active, where as global classes 1, 5, and 15 were sporadically active overall.  

About 7 global classes (1, 6, 8, 12, 13, 15, and 17) were primarily not active 

during sleep, but active during the time awake.  Of these 7 global classes, two 

global classes (12 and 13) were constantly active during the time awake, while 

the remaining five global classes fired more sporadically during the time awake. 

 

5.5.1 Motor Unit Template Uniting Stage 2 

The first stage of the motor unit template uniting stage found the most 

stable, commonly occurring motor unit classes to form global classes (as 

described in section 4.3.6.1).  This encompassed the clustering of all class 

templates local to 3-minute records and global class labels were assigned to 

these class templates.  In the second stage, all unlabeled local class templates 

were attempted to be classified as global classes.  The performances of the 

second stage over all global classes over all recordings were evaluated using a 

gold standard manually produced by an expert classifier using the GUI-based 

tools described in section 4.4.6.2.   

The second stage of the motor unit template uniting stage can be viewed 

as a new classification problem, but this time local class templates over the entire 
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24 hours must be assigned a global class label.  The percent correct, false 

positive percentages, misclassified percentages, and the percent accuracy have 

the same definitions as before, but this time with respect to the global classes 

found during stage one.  The performance results of the second stage of the 

motor unit template uniting stage are shown in a cumulative distribution in Figure 

5.13. 

 

 

 

 

 

 

 

 

The performances for the second stage of the motor unit template uniting 

procedure were outstanding.  There were no tracking accuracies that were less 

than 69%, but there were 39 global classes out of 53 (73.6%) that had 

accuracies greater than 90%.  The percentage correct ranged from 70.8 to 100% 

(mean = 93.6%, standard error = 1.0%), the false positive percentage ranged 

from 0 to 25.8% (mean = 2.3%, standard error = 0.62%), and the percent 

misclassified ranged from 0 to 13.3% (mean = 0.28%, standard error = 0.25%).  

Figure 5.13 Motor unit template uniting procedure stage 2 performance percentages.  The percentage 
correct for tracking all global classes in stage 2 of the motor unit template uniting procedure for all 
recordings were sorted then plotted.  This order was then applied when plotting the false positive %, % 
misclassified, and the % accuracy. 
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Finally, the percent accuracies ranged from 69.9 to 100% (mean = 91.6%, 

standard error = 1.1%). 

Since the accuracy of the second stage of the motor unit template uniting 

procedure was primarily determined by the false positive percentage, the percent 

correct was plotted against the false positive percentage (Figure 5.14). 

 

 

 

 

Like Figure 5.8, Figure 5.14 was divided into four quadrants representing the four 

different combinations of high and low percent correct and high and low false 

positive percentages.  The quadrant boundaries in this case were 86 % correct 

and 11% false positives.  The performances for most of the global classes fall 

into the high percent correct, low false positive percentage quadrant (45 out of 

Figure 5.14 Motor unit template uniting procedure stage 2 performances of % correct versus false positive 
%.  The % correct in tracking was plotted against the false positive % for all global classes in all recordings.  
The lavender line divides the figure into 4 quadrants that represent low false positives with low percent 
correct, lo false positives with high percent correct, high false positives with low percent correct, and high 
false positives with high percent correct.  The dividing lines for these quadrants are 86 % correct and 11 % 
false positives. 
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53, or 84.9%).  All but one of the global class performances for the subject 2 

recording and all but two global class performances for the subject 1 recording 

were in this quadrant.  There were only 2 global class performances that fell into 

the high percent correct, high false positive category (3.8%).  The remaining 

global class performances fell into the low percent correct, low false positive 

category (6 out of 53, or 11.3%).  Most global class performances in this 

quadrant were from the subject 3 recording.  There were no global class 

performances in the low percent correct, high false positive quadrant.  In 

summary, the global classes of the subject 1, 2, and 4 recordings achieved very 

good performances while almost a third of those of the subject 3 recording had a 

low percent correct coupled with low false positives. 

 The initial number of local templates classified as global classes after 

stage one of the motor unit template uniting procedure was compared to the 

overall accuracy in global class tracking (Figure 5.15). 
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As described in section 4.3.6.2, a nearest neighbor procedure was utilized in 

conjunction with fuzzy membership values for individual potentials in order to 

classify local class templates as global classes.  The global classes that have 

more local templates already assigned global class labels after the first stage of 

the motor unit template uniting procedure have more optimal nearest neighbors 

to be used in stage two.  Thus, they have the ability to perform better.  In other 

words, having more initially labeled local templates to use as representative 

global class templates, allows us to select nearest neighbor templates that occur 

closer in time to the local templates of a 3-minute record that we are trying to 

classify.   We would expect those global classes that have a larger number of 

Figure 5.15 Number of global class templates versus the accuracy of stage 2 of the motor unit 
template uniting procedure.  The total number of templates for each global class throughout the 
entire recording was plotted against the percent accuracy for the second stage of the motor unit 
template uniting procedure. 
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labeled local templates to perform better, i.e. have a high accuracy.  Figure 5.15 

shows that this is not necessarily the case.  In fact, there is no such relationship 

for any recording and the two parameters are largely independent.  This 

suggests that the local templates are mostly stable over time and do not change 

appreciably to cause performances to decrease.   

 

5.5.2 M-wave Results 

M-waves were obtained from each subject both before and after each 24- 

hour recording for cross-subject data comparisons in addition to determining 

electrode stability.  The M-waves were obtained for cross-subject comparison 

because the peak to peak values of each global class template can be 

normalized to the M-wave.  The M-wave represents the maximal EMG response 

from the muscle being studied. Table 5.2 shows the M-waves obtained from each 

subject from each of the distal and proximal channels. 

 

 In theory, obtaining identical M-wave amplitudes before and after the 

recording should reveal that the recording electrodes did not move at all during 

the 24-hour recording.  Table 5.2 shows that the M-wave amplitudes increased 

Table 5.2 M-wave amplitudes for all subjects.  M-wave values were obtained for the thenar muscle in 
each channel both before and after each recording.  The table also shows the mean peak to peak 
values between pre-recording and post-recording.  The differences in amplitude between the pre-
recording and post-recording values are expressed as a percentage of the pre-recording peak to peak 
value. 
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from the pre-recording to post-recording values in all but one subject.  The 

increases in M-wave amplitudes may stem from the fact that the properties of the 

recording electrodes change after 24 hours of use.  Since the electrodes were 

taped into position with numerous wrappings, the electrode/skin interface may 

have become more conductive due to sweat and increased adherence of the 

electrodes to the skin.  This increased conductance may have yielded the 

increased M-wave amplitudes. 

 

5.5.3 Motor Unit Template Uniting Stage 3 

While the second stage of the motor unit template uniting procedure 

performed most of the global class tracking, the third stage was also important.  

The third stage of the motor unit template uniting procedure found all global 

classes in each segment that were not found by either the first stage of the motor 

unit template uniting procedure or the clustering pass of the overall classification 

algorithm.  It also combined any classes that were erroneously split.  Splitting 

error means that a global class correctly had the correct members, but some 

members of that global class were incorrectly categorized as a class that was not 

tracked over the entire recording.  Splitting error did not contribute negatively to 

the tracking accuracy, but did produce more missed potentials in the individual 

classification results. 

The performances of the third and final stage over all global classes over 

all recordings were evaluated using a gold standard manually produced by an 

expert classifier using the GUI-based tools described in section 4.3.6.3.  These 
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performances rated the ability of the classification algorithm to associate the 

correct individual member potentials with each global class at the 3-minute 

record level.  The performance percentages have the same definitions as those 

in section 5.4.  The performance results of the third stage of the motor unit 

template uniting stage are shown in a cumulative distribution in Figure 5.16. 

 

 

 

 

 

 

 

 

 

 

 

The performances for the third stage of the motor unit template uniting procedure 

were outstanding.  The percentages correct ranged from 92.7 to 100% (mean = 

99.5%, standard error = 0.19%), the false positive percentages ranged from 0 to 

40.9% (mean = 3.8%, standard error = 1.2%), the percent split ranged from 0 to 

38.9% (mean = 2.6%, standard error = 0.96%), and the percent accuracy ranged 

from 59.0 to 100 % (mean = 96.0%, standard error =1.2%).  There were no 

misclassifications.  The false positive percentage was again responsible for 

Figure 5.16 Motor unit template uniting procedure stage 3 performance percentages.  The 
percentage correct for tracking all global classes in stage 3 of the motor unit template uniting 
procedure for all recordings were sorted then plotted.  This order was then applied when plotting the 
false positive %, % misclassified, and the % accuracy. 
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lowering the accuracy of the third stage of the motor unit template uniting 

procedure.  The percentage correct was plotted against the false positive 

percentage for the third stage of the motor unit class uniting procedure (Figure 

5.17). 

 

 

 

 

 

 

 

 

 

 

 

The four quadrant method was similarly applied in this case.  The dividing lines 

were drawn at approximately 92% correct and 9% false positives.  The majority 

of global classes fell into the high percent correct, low false positive quadrant (47 

out of 53, or 88.6%).  The remaining global classes fell into the high percent 

correct, high false positive quadrant (6 out of 53, or 11.4%).  All of the 

Figure 5.17 Motor unit template uniting procedure stage 3 performances of % correct versus false 
positive %.  The % correct in tracking was plotted against the false positive % for all global classes in all 
recordings.  The lavender line divides the figure into 4 quadrants that represent low false positives with 
low percent correct, lo false positives with high percent correct, high false positives with low percent 
correct, and high false positives with high percent correct.  The dividing lines for these quadrants are 92 
% correct and 9 % false positives. 
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percentages correct were very high and unrelated to the false positive 

percentage, much like stage 2 of the motor unit template uniting procedure. 

 Since the splitting percentage affects the percentage missed in individual 

classification, the percentage missed was plotted against the splitting percentage 

for all global classes in each recording (Figure 5.18). 

 

 

 

Although there are no trends in Figure 5.18, several global classes in the subject 

3 recording appear to form a directly proportional relationship between the 

percent missed and the percent split.  A clearer relationship could be seen 

between the percent missed and the percent split if more 3-minute records were 

manually evaluated.  Unfortunately, manually classifying more 3-minute records 

Figure 5.18 Percent missed in individual classification performance versus the splitting percentage.  
The percent missed in the individual classification performance was plotted against the splitting 
percentage.  The splitting error represents potentials that are missed during the individual 
classification.  The circled global class points of the subject 3 recording seem to demonstrate a 
directly proportional relationship. 
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is exceedingly time consuming, so it is not feasible to form a more 

comprehensive set of gold standards for performance evaluation. 

 

5.6 Performance Comparison 

 The outcome measures for the classification algorithm were the 

performances for the individual potential classification, plus the two tracking 

performances.  They were compared to see if the tracking measures impacted 

the classification performances.  Figure 5.19 shows the individual classification 

percentage correct plotted against the percentage correct for the second stage of 

the motor unit template uniting procedure. 

 

 

Figure 5.19 Percent correct comparison between individual classification and tracking (stage 2 of 
the motor unit template uniting procedure).  The percent correct for the individual classification 
global class was plotted against the percent correct for each global classes tracking (stage 2 of the 
motor unit template uniting procedure.  The unity line (black line) was included for comparison. 
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Most of the global classes lie below the unity line, indicating that the percentages 

correct for the individual classification performance are greater than their 

corresponding percentages correct with respect to tracking.  This was especially 

the case for 7 classes where classification performance exceeded 85 % correct 

but tracking performance was less than 85 % correct. In contrast, tracking 

performance exceeded 90 % for another three classes whereas the correct 

classification was less than 75 %. These results suggest that it is not a 

requirement for a global class to be well tracked if it is to be well classified.  This 

relationship is further explored by plotting the accuracy with respect to individual 

classification performance versus accuracy with respect to tracking (Figure 5.20). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20 shows that most of the global class accuracies lie above the unity 

line, meaning that the tracking accuracies for the global classes are higher than 

Figure 5.20 Percent accuracy comparison between individual classification and tracking (stage 2 of 
the motor unit template uniting procedure).  The percent accuracy for the individual classification 
global class was plotted against the percent accuracy for each global classes tracking (stage 2 of 
the motor unit template uniting procedure.  The unity line (black line) was included for comparison. 
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those of the individual classifications, with all having tracking accuracies greater 

than 70%.  This reveals that all global classes were tracked accurately, but their 

classification accuracies were more variable and unrelated to the tracking 

accuracies.  Global class tracking and the individual classification of the global 

classes seem to be independent. 

 False positives dominated the decline in accuracy, so the relationship of 

tracking accuracy and the false positive percentage was investigated (Figure 

5.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21 Percent false positive comparison between individual classification and tracking 
(stage 2 of the motor unit template uniting procedure).  The percent false positives for the 
individual classification global class was plotted against the percent false positives for each 
global classes tracking (stage 2 of the motor unit template uniting procedure.  The unity line 
(black line) was included for comparison. 
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The majority of global classes lie beneath the unity line in Figure 5.21, meaning 

that the false positive percentages for the individual classification performance 

are generally greater than the false positive percentages for global class tracking 

(approximately 8 out of 53, or 15.1%, had greater false positive percentage for 

global class tracking).  This majority of global classes had less than 10% false 

positive percentages with respect to global class tracking, but wide ranging false 

positive percentages with respect to individual classification (0 to 62%). It seems 

that the false positives in individual classification are unrelated to the false 

positives in global class tracking.  The factors that may contribute to these 

differences in false positives are addressed in the Discussion. 

 The individual classification performance was also compared to that of the 

tracking performance in stage 3 of the motor unit template uniting procedure.  

Figure 5.22 shows the percent accuracy of the individual classification 

performance plotted against the percent accuracy of the tracking performance of 

stage 3 of the motor unit template uniting procedure. 
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The global classes were tracked in stage 3 with a high accuracy (47 out of 53, or 

89%, performed better than 90% accuracy), where as the corresponding 

individual classification performance accuracies were more wide ranging 

(between 52 and 100 %).  The percent accuracy for stage 3 seems to be 

completely unrelated to the percent accuracy of the individual classification 

performance.  A similar comparison was made between the percent accuracies 

of stage 2 and stage 3 of the motor unit template uniting procedure (Figure 5.23). 
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Figure 5.22 Percent accuracy comparison between individual classification and tracking (stage 3 of the 
motor unit template uniting procedure).  The percent accuracy for the individual classification global class 
was plotted against the percent accuracy for each global classes tracking (stage 3 of the motor unit 
template uniting procedure). 
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Most of the data falls above the unity line indicating that the accuracy of the 

tracking performance was greater for stage 3 than for stage 2. 

  

 

 

 

 

 

 

Figure 5.23 Percent accuracy comparison between the tracking performances of stages 2 and 3 
of the motor unit template uniting procedure.  The percent accuracy for the tracking performance 
of stage 2 was plotted against the percent accuracy for stage 3 of the motor unit template uniting 
procedure for each global class.  The unity line (black line) was included for comparison. 
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The numbers of firings for each global class for the entire recording were 

compared to the overall accuracies in tracking (Figure 5.24). 

 

 

 

 

We can theorize that those global classes with more firings should be more 

trackable.  Since local templates were derived by averaging individual member 

potentials, having more member potentials should produce better representative 

local templates.  Better local templates should make the trackability better.  

According to Figure 5.24, this relationship is not apparent.  It seems that the 

trackability was not affected by the number of firings for each global class. 

Figure 5.24 Percent false positive comparison between individual classification and tracking 
(stage 2 of the motor unit template uniting procedure).  The percent false positives for the 
individual classification global class was plotted against the percent false positives for each 
global classes tracking (stage 2 of the motor unit template uniting procedure.  The unity line 
(black line) was included for comparison. 
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5.7 Performances Between Classifiers 

 A non-expert classifier and two expert classifiers derived gold standard 

classifications for individual potential classification.  The gold standards for 

individual potential classifications of the non-expert classifier were evaluated with 

respect to those of one expert classifier for three of the four recordings over 23 

global classes (Table 5.3). 

 

Overall, the non-expert’s classifications agreed with those of the expert with a 

about a 59% accuracy.   

The gold standards for individual potential classifications of the two expert 

classifiers were compared for 10 global classes from two recordings (Table 5.4).  

 

Recording 

Number of 
Global 

Classes 
Compared 

% 
Correct 

% FP %Missed %Misclassified % Accuracy 

Subject 2 6 77.6% 30.9% 17.4% 5.0% 63.7% 

Subject 3 12 88.4% 56.0% 5.6% 6.0% 40.9% 

Subject 4 5 96.4% 24.7% 1.6% 2.0% 73.6% 

Total 23 87.5% 37.2% 8.2% 4.3% 59.4% 

Table 5.3 Evaluation of non-expert gold standards for individual potential classification with respect to 
those of an expert.  Only three of the four recordings were compared for a total of 23 global classes. 

Table 5.4 Comparison of two expert gold standards for individual potential classification over 10 
global classes.  Only 2 of the 4 recordings were compared. 
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 On average, the 2 classifiers agreed on classification 79% of the time. For 

three of these classes, only 4, 7 and 13 potentials were examined and 

agreement was low for these classes (50%, 57% and 62%, respectively). When 

these infrequently firing classes were excluded, classification agreement 

increased to 89 %, on average (n=7 classes). 

Tables 5.2 and 5.3 shows that when using the software classification tools 

to manually classify individual portions of EMG, all users can produce different 

results.  The degree to which the manual results differ can depend on the 

expertise of the classifiers.  The expert classifiers agree within 79% accuracy, 

while the agreement of the non-expert classifier when compared to an expert 

classifier was substantially less (about 59%). 

Since two experts were able to classify individual potentials at an accuracy 

of 79%, an automatic classification algorithm should be expected to perform just 

as well.  In the case of the automatic classification algorithm described here, 

individual potentials are classified with an accuracy of better than 79% for 49 of 

53 global classes (92.5%).   After performing intra-class correlation statistical 

tests, it was found that the performance differences between expert raters were 

not significantly different.  It was also found that the performance differences 

between an expert rater and the algorithm were not significantly different as well.  

Thus, the hypothesis that automatic (software-based) classification of motor unit 

potentials is as accurate as manual (user-based) analysis of motor unit potentials 

was met. 
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The non-expert classifier and one expert classifier also derived gold 

standards for global class tracking (both stage 2 and 3 of the motor unit template 

uniting procedure).  The outcome evaluation of the non-expert’s performance at 

tracking during stage 2 of the motor unit template uniting procedure with respect 

to that of an expert was even better for classification of individual potentials 

(Table 5.5). 

 

Recording 

Number of 
Global 

Classes 
Compared 

% correct 
% False 
Positives 

% 
Misclassified 

% Accuracy 

Subject 1 17 92.6% 9.0% 7.4% 85.2% 

Subject 2 4 93.5% 2.4% 6.5% 91.4% 

Subject 3 8 95.4% 5.1% 3.1% 92.1% 

Subject 4 2 98.5% 0.0% 1.5% 98.5% 

Total 31 95.0% 4.1% 4.6% 91.8% 

 

The evaluations in Table 5.5 were computed by checking which global classes 

were present in which 3-minute EMG portions in the second stage of the motor 

unit template uniting procedure of both the gold standards of the non-expert and 

the expert.  Both gold standards agree with 92% accuracy and 95% correct.   

 The gold standard tracking results for stage 3 of the motor unit template 

uniting procedure were compared between those of the non-expert and those of 

the expert (Table 5.6). 

 

 

 

Table 5.5 Comparison of non-expert gold standards for global class tracking (stage 2 of the motor unit 
template uniting procedure) to those of an expert.  A total of 31 global classes over 4 recordings were 
compared. 
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These gold standard results are similar, with both the non-expert and expert 

achieving tracking performances with accuracies of 92%. 

 

5.8 Processing and Manual Classification Times 

 The automated EMG classification program required about two weeks on 

average to process a 24-hour recording, but manual classification times were 

much longer.  Table 5.7 shows the approximate execution times for each stage 

of the automated EMG classification program (including the stages that must be 

manually accomplished by a human operator) on a 2.8 GHz Intel processor 

based machine.   

 

 

 

 

 

 

Non Expert Results Expert Results 

Recording 

% 
Correct 

%FP %Missed 
% 

Accuracy 
% 

Correct 
%FP %Missed 

% 
Accuracy 

Subject 1 99.6% 3.0% 0.4% 96.7% 94.4% 0.8% 5.9% 93.4% 

Subject 2 99.7% 8.7% 0.3% 91.7% 99.5% 5.8% 0.4% 94.2% 

Subject 3 98.2% 7.5% 1.8% 91.3% 99.5% 5.8% 0.4% 94.2% 

Subject 4 100.0% 10.8% 0.0% 90.3% 94.1% 1.0% 6.1% 93.0% 

Total 99.4% 7.5% 0.6% 92.5% 93.5% 1.4% 6.9% 91.8% 

Table 5.6 Comparison of non-expert gold standards for global class tracking (stage 3 of the motor unit 
template uniting procedure) to those of an expert. 
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Table 5.2 also shows the time required for an expert to manually classify a 

recording with the help of the classification algorithm.  It took an expert a 

complete 40 hour week to manually classify 12 minutes of EMG.  If extrapolated 

to the entire 24-hour recording, the time required skyrockets to about 2 and a half 

years.  This extraordinary amount of time makes the manual classification of an 

entire 24-hour recording virtually impossible.  The proportion of time spent 

processing data (99 % for algorithm analysis, 1 % for manual analysis) versus 

human intervention time (1 % for the algorithm and 99 % for manual analysis) 

also differs significantly (p<0.001, Chi square test). Thus, the hypothesis that the 

automatic (software-based) classification of motor unit potentials is faster than 

manual (user-based) analysis of motor unit potentials was met. 

 

 

Stage 
Program 

Execution Time 

Time To Manually 
Complete (12 

minutes of EMG) 

Time to Manually 
Complete 24 hours 

of Processing 
(Extrapolated) 

Segmentation 5 Hours 

Clustering 1 Day 

 
5 days 

 
2.5 Years 

Template Matching 30 minutes - 30 minutes 

Manual Tracking 
Verification 

10 Days - 10 Days 

Final Unsorted 
Analysis 

5 Days  - 

TOTAL ~ 19 days 5 days >2.53 years 

Table 5.7 Automated EMG classification program approximate execution times.  The approximate 
execution times for each stage plus the entire execution time of the entire algorithm on a 2.8 GHz 
Intel processor based machine are listed below.  These times are compared with those required to 
manually accomplish the same amount of processing. 
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5.9 Involuntary Motor Unit Behavior 

 To illustrate some of the biological importance of developing an algorithm 

to classify long term EMG recordings at the motor unit level, examples of motor 

unit firing behavior will be given, including the common motor unit firing patterns, 

the potential relationship between the global class excitability and size, how 

motor unit activity changes during awake and sleep time, and possible effects of 

anti-spasm medication. 

There were two main types of firing behavior during the 24-hour 

recordings – tonic and sporadic (Figures 5.25 and 5.26, respectively). 

 

 

 

 

 

 

Figure 5.25 Tonic firing global class example.  Four global classes over 3 recordings are shown 
whose firing patterns are mostly periodic.  The histograms were normalized to the number of 
potentials in each respective global class over the entire recording.  The firing rate statistics are 
also shown. 
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Global classes 5 and 10 of the subject 1 recording, global class 1 of the subject 4 

recording, and global class 7 of the subject 2 recording, all showed some tonic 

firing at frequencies less than 6 Hz.  Global classes 21 and 11 of the subject 1 

and 3 recordings, respectively, fired mostly sporadically.  The global classes with 

the smaller amplitude templates seemed to fire most often and sometimes 

periodically, while global classes with larger templates fired more sporadically.  

Global classes could also exhibit both firing patterns (e.g. global class 10 in 

Figure 5.25).   

To examine which kinds of motor units may fire spontaneously, the 

number of potentials over the entire recording was plotted against the peak to 

Figure 5.26 Sporadically firing global class example.  Two global classes in two recordings are shown whose 
firing patterns are sporadic.  The firing rate statistics are also shown. 
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peak values of the global class templates normalized by their respective M-wave 

amplitudes (Figure 5.27). 

Figure 5.27 Peak to peak value versus the number of potentials for each global class.  The number of 
potentials over the entire 24 hour recording is plotted for each global class in each recording. 
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The global classes with the smaller amplitude templates seemed to fire most 

often and sometimes tonically suggesting that these classes were more 

excitable, while global classes with larger templates fired more sporadically. 

These global classes may have higher thresholds for activation.  Figure 5.27 

shows a general trend of an inverse relationship between the number of 

potentials over 24 hours and the peak to peak value of each global class 

template.  This trend is clearer when viewed on a per subject basis, particularly 

when only the global classes with individual classification accuracies of greater 

than 90% are compared (Figure 5.28). 

 

 

 

 

 

 

 

 

 

 

 

The semilog plot in Figure 5.28 shows that the global class points of the  

subject 1 recording form a line, revealing that the relationship is exponential 

between the number of potentials over the entire recording and the global  

Figure 5.28 Peak to peak value versus the number of potentials for each global class (only those 
with greater than 90% accuracy in individual classification performance).  The number of potentials 
over the entire 24 hour recording is plotted for the global class in each recording whose individual 
classification accuracy is greater than 90%.  Both panes have identical data, but the left pane has a 
linear scale while the right pane has a semilog scale. 
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class template peak to peak value.  The same is true for four of the five global 

class points of the subject 2 recording (excluding the point at 0.69 on the x-axis). 

 Another more global approach to examine the amount of motor unit 

activity present during a 24-hour period is to plot motor unit duty times. The duty 

times for all 16 global classes of the subject 3 recording are plotted in ascending 

order in Figure 5.29. Displayed are the ON times as a percentage of 24 hours in 

which the global classes were ON.   

 

 

For a global motor unit class to be considered ON, there had to be at least one 

firing in a 3-minute span.  The global classes were active between about 17 and 

75% of the recording.   
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Figure 5.29 Global class duty times for the subject 3 recording.  The duty times for all 16 global 
classes in the subject 3 recording were plotted in ascending order.  The duty times represented 
the percentage of time that each global motor unit class was ON over the entire 24 hour 
recording. 
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To illustrate the importance of subject state, duty times were also plotted 

with respect to the percentage of the overall ON times that subject 3 was awake 

(Figure 5.30).   

 

A majority of the global motor unit classes in the subject 3 recording were active 

mostly during the time the subject was awake.  Only global motor unit classes 3, 

4, 7, and 14 were just as active during the time asleep as the time awake. 

 The output of the classification algorithm can be used to determine the 

effects of anti-spasm medications. Three of the four subjects took anti-spasm 

medication.  The activity of these drugs may influence the results by suppressing 

the activity of some motor units.  As an example, Subject 2 administered a 

Figure 5.30 Global class awake duty times with respect to the overall duty times for the subject 3 
recording.   The times that the global motor unit classes were ON during the awake time were 
plotted as percentages with respect to the total ON time for each global motor unit class. 
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baclofen/klonopin dosage at 3 different times during the 24 hour recording.  The 

approximate times of the drug administration are shown with red lines along with 

the dose number (as in number of administrations) in Figure 5.31.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the first dose of medication, the activity in all 7 global classes  

decreases, with global class1 becoming active again about 4 hours later.  The 

second application of the medications seem to coincide with an increase of 

activity in global classes 1 and 4.  Global class 1 appears to become very active 

after the third medication application, whereas the activity of global classes 3 and 

5 are dramatically reduced.   

Figure 5.31 ON regions for the subject 2 recording.  The classes are labeled on the y-axis while the 
time is labeled on the x-axis in hours.  According to the timing standard, hour 0 is midnight to 1 am and 
hour 23 is 11 pm to midnight.  The red lines indicate the approximate times of the administering of anti-
spasm medications.  The shaded areas show sleep time. 
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Chapter 6: Discussion 
 

 The algorithm developed in this study was designed to classify motor unit 

potentials automatically in 24-hour recordings of surface EMG.  Thenar muscles 

of SCI subjects were chosen for study because previous investigations have 

shown that spontaneous single motor unit activity is common [Zjdewind and 

Thomas, 2001]. The performance of the algorithm was assessed two ways: By 

comparing its tracking of global classes over the entire 24 hour range to that of a 

human operator and by examining its ability to correctly classify individual motor 

unit potentials as to belonging to particular global classes relative to an EMG 

expert.  The algorithm was able to track 53 global classes in four 24-hour 

recordings and achieve 92% accuracy for 58% of the global classes (n = 31), the 

level of agreement between a non-expert and an expert rater.  For 77% of the 

global classes (n=41), the algorithm was able to achieve a classification 

performance of greater than 79 % accuracy over two recordings, the level of 

agreement between  two expert raters.  This performance represented an 

average of 96% correct with a false positive rate of about 10.2 %.  The algorithm 

required up to three weeks on average to produce results for each recording, 

about the same time as a person took to classify only 12 minutes of data and to 

track the unit templates over 24 hours.  Thus, the goal of accurately and 

automatically following the long term activity of spontaneously firing motor units 

in muscles paralyzed by spinal cord injury was accomplished. 

 While these overall performance statistics are good, it is important to keep 

in mind that these statistics only estimate the ability of the algorithm to correctly 
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classify potentials.  There is no feasible way to ascertain the entire performance 

of the algorithm over a full 24-hour EMG recording.  This is due to the inherent 

need for an algorithm of this type in the first place – it would be take a human 

operator more than 118 months (2.5 years) to manually classify an entire 24-hour 

EMG recording, more than 157 times that (three weeks) needed by the algorithm 

to accomplish the same feat. 

 A number of issues ranging from noise removal to the limitations and 

impediments of the automatic motor unit potential classification algorithm will be 

discussed in the subsequent sections. 

 

6.1 Segmentation and Noise Removal 

The goals of segmentation were to extract as many motor unit potentials 

as possible and to minimize the noise that was mistakenly segmented.  Noise 

elimination thresholds determined the balance between the elimination of motor 

unit potentials and the elimination of noise.  The frequency based noise 

elimination thresholds were set based on the gold standard classification of HR 

16 MIN 45 of the subject 1 recording, while the noise elimination thresholds were 

based on comparative peak to peak values adapted for each 3-minute portion of 

a 24-hour recording.  

The segmentation procedure was extremely successful, finding a large 

percentage of actual motor unit potentials (93.7%) with a small false positive rate 

(2.3%).  Of the actual motor unit potentials that either were missed by the 

segmentation procedure or eliminated mistakenly as noise, their amplitudes were 
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small relative to the baseline noise.  Almost none of them were discernible 

enough at the current amplitude resolution to be accurately classified and tracked 

over 24-hours by an expert classifier (Figure 5.2). 

Adaptive noise elimination thresholds were a major strength in minimizing 

the noise segmented.  These thresholds gave the segmentation procedure the 

leeway to eliminate considerable noise when it was prevalent while eliminating 

much less in cleaner, noise-free recordings.  In comparison, fixed thresholds are 

not able to change based on the noise level of recordings, like those thresholds 

for the frequency based noise elimination method, but specifically target 

repeatable noise.  The value of fixed thresholds is that they can remove noise 

that similarly manifests itself from recording to recording.  Thus, an adaptive 

noise elimination procedure was the best way to reduce the noise level.   

Extensive noise removal is a beneficial tool for the automatic classification 

algorithm.  If there are less potentials to classify, the algorithm’s execution speed 

increases.  Similarly, the removal of noise-like potentials reduces the algorithm’s 

ability to make incorrect classifications.  Some classifiable potentials may be lost 

when extensively removing noise, causing the resulting firing patterns to be 

incorrectly skewed.  If noise elimination thresholds were reduced in order to 

retain these classifiable potentials, erroneous classifications made for the 

preserved noise-like potentials would do the same firing pattern skewing that was 

meant to be prevented. 
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6.2 Algorithm Classification Performance 

The automatic global classification algorithm was able to achieve a mean 

accuracy of 86% similar to the performance of two human raters.    Only 17 

global classes (32%) had a lower accuracy than the mean and these classes 

occurred in 3 of the 4 recordings.  Human operators, both non-expert and expert, 

can reach different results using the EMG viewing software in manual 

classification for a number of reasons.  Some human operators may have more 

experience at manually classifying motor unit potentials than others, especially in 

the case presented here (non-expert versus expert classifiers).  Classifications 

can also be subjective in nature and differ from operator to operator.  The length 

of time required to classify a portion of EMG is also a factor.  Over time, 

subjective judgments can change either due to operator fatigue or increased 

experience working with a given portion of EMG. Several other factors could 

contribute towards the reduced classification performance of the algorithm, as 

described below. 

 

6.2.1 Signal to Noise Ratios 

Global classes with wide ranging signal to noise ratios (from 0.64 to were 

able to be followed accurately over 24 hours, but the performances for the 

various global classes varied over all the recordings.  The plot of signal to noise 

ratios of the individual global classes from all recordings to the overall accuracy 

of classification shows no clear relationship between these parameters (Figure 

5.10).  Large signal to noise ratios yield high classification accuracies, but lower 
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signal to noise ratio motor unit templates still have good results as well.  The 

global class with the lowest accuracy (38%) had global class templates with 

signal to noise ratios (8.5 distal, 1.2 proximal).  This average signal to noise ratio  

of 4.85 was close to the overall signal to noise ratio mean of 5.9.  Thus, a low 

signal to noise ratio alone could not explain why some classes could not be 

classified reliably. 

It was possible for one channel to have a template with a large signal to 

noise ratio template while the other channel template had a small signal to noise 

ratio template.  As described in section 4.3.4, the classification algorithm only 

used distance metrics in one channel to make judgments if the peak to peak 

value of one channel’s template was too small.  While this did allow the tracking 

of more motor unit classes, it also could be problematic in resolving the 

differences between motor unit classes that are similar in one channel, but 

different in another.  For example, global classes 9 and 13 in the subject 3 

recording fit these criteria (Figure 5.5, section 5.3), resulting in false positives and 

the lowest accuracy reported (38%).  They are similar in the distal channel, but 

differ markedly in the proximal channel.  Some global class 9 potentials were 

confused for global class 13 potentials because distance metrics weren’t used for 

the proximal channel in this case.  This situation could be remedied by always 

applying distance metrics to every channel, but this would limit the number of 

global classes that could be tracked. 
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6.2.2 Amplitude Resolution 

 Another consideration is amplitude resolution.  The average global class 

potential only occupied about 25% of the full scale range of the data logger. 

Figure 6.1 shows an example of some raw data as it was recorded by the data 

logger. 

Accurately classifiable potentials are shown in the boxes with solid lines and 

used only about 5% of the data logger’s input range.  Only those potentials with 

peak to peak values of less than 12 mV (0.3% of the logger’s range) could not be 

classified accurately.  After smoothing and filtering, these motor unit potentials 

appeared to be discernible and legitimate potentials, but when recorded with low 

amplitude resolution, these smaller potentials did not always assume the same 

waveform shape, making their classification unreliable.  If the gain were 
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Figure 6.1 Raw EMG with amplitude units of Volts (V), portion HR 18 MIN 18 of the subject 1 
recording.  The EMG here appears just as it was recorded by the data logger.  The available 
voltage range of the data logger was 0-4 V and the voltage resolution was 1 mV.  The potentials 
that could be classified, as shown by the rectangles with solid lines, only have a peak to peak 
value of approximately 200 mV.  Potentials with peak to peak values of about 100 mV are about 
the size of an average potential across all recordings.  Some potentials with even smaller peak to 
peak values could still be tracked, but those with peak to peak values of less than 12 mV could 
not be tracked.  Spasms, like that in the rectangle with the broken line, were much larger and 
filled up more of the total logger’s input range. 

Raw EMG – HR 18 MIN 18, Subject 1 Recording 
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increased, the EMG would have been recorded with a higher amplitude 

resolution and smaller motor unit potential waveforms would have been more 

stable.  Increased gain would mean that the baseline noise would have also been 

increased and more noise may have been segmented as a result.  This 

segmented noise also may have been misconstrued as superimposed potentials, 

possibly reducing classification accuracy. 

Figure 6.1 also shows a spasm, (rectangle with the broken line) that 

produced much more EMG and filled up more of the total logger’s input range 

(about 70%) in this case. If the gain had been higher, any spasm like this one 

would simply cause the amplifiers to saturate, leaving the logger to record a 

constant value of 0 V or 4 V.  This would be beneficial because any large 

amplitude spasms would not appear as waveforms that resemble EMG in the first 

place. The gain was set at a level to capture both the spasms and the motor unit 

potentials to characterize involuntary EMG in thenar muscles paralyzed by SCI.  

The exclusion of spasm data from the classification was important.  EMG 

from different potentials interferes with each other, making resolution of these 

superimposed potentials almost impossible to classify and the algorithm was not 

designed for spasm analysis.  The motor unit firing behavior during spasms is 

different than the spontaneous motor unit activity characterized here.  Spasms 

are responsive to specific inputs, tend to be stronger contractions, and fire at 

higher rates [Thomas and Ross, 1997]. 
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6.2.3 Superposition Resolution Difficulties 

When two or more motor unit potentials fired close together, their 

potentials could superimpose. Figure 6.2 shows a superposition correctly 

resolved by the classification algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

In the bottom panes of Figure 6.2, the constituent templates of the 

superimposed potential (red and green potentials) are shown at the appropriate 

phase shifts required to build the target superimposed potential (blue trace).  In 

the top panes, the sum of the constituent potentials in the bottom panes produce 

the green traces in each channel.  The green traces match the target blue traces 

in these top panes. 

Figure 6.2 Example superposition.  The left panes show the superimposed potential in the 
distal channel while the right panes show the same superimposed potential in the proximal 
channel.  The x-axes have units in seconds.   
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Superpositions were not always resolved by human operators or the 

classification algorithm.  An inability to resolve superimposed potentials reduced 

the overall success of the classification for the 53 classes by an average of 7.4% 

in accuracy.  The only way for a superposition to be resolved was for each of the 

constituent classes in that superposition to exist independently as a global class.  

If one of these global classes has a very small peak to peak amplitude, it most 

likely was not found due to the aforementioned limitations of the classification 

algorithm.  A person will see this potential as classifiable, but for the algorithm it 

will go unclassified. 

The poorer performance of the superposition resolution routine compared 

to the overall classification algorithm could be attributed to the distance metrics 

used within the algorithm.  The correct global class template to use at each level 

of superposition resolution was determined by computing the correlation 

coefficient after a cross-correlation method was used to slide the global class 

template into its optimal position.  A problem using the correlation coefficient is 

illustrated in Figure 6.3. 
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The blue potential is the superimposed potential to be resolved.  The first correct 

constituent class template of this superimposed potential is the orange one, but 

the correlation between the orange and blue potentials is only 0.88.  

Unfortunately, the black class template potential is selected as the first 

constituent in this situation because it correlates highest with the target 

superimposed potential (0.94) because it varies the same way as the blue 

superimposed class along the whole extent of both potentials.  The orange class 

template ceases to vary along with the blue superimposed template at about data 

point 50, thus resulting in the lower correlation value.   

It is possible that this issue could be corrected by employing a Euclidean 

distance metric along with the correlation coefficient.  The black class template 

Figure 6.3 Correlation coefficient errors in selecting constituent classes in superpositions.  The 
blue potential is the recorded superposition that must be resolved.  The orange potential is the 
class template for the correct constituent potential within the superimposed blue potential. 
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would then be rejected as it would have a much larger Euclidean distance from 

the superimposed potential than that of the orange class template.  In order to be 

successful and effective in resolving superpositions while keeping 

misclassifications low, correct thresholds for both metrics and a suitable way of 

using them across both channels of would need to be found. 

Another issue is that superpositions of small unknown classes prove 

problematic for automatic classification.  Occasionally, a potential that visually 

could be classified as belonging to a certain global class by a person would not 

be classified as such by the algorithm because it was not mathematically similar 

enough to the target global class template for a class.  The potential could 

actually be a superposition whose constituent potentials belong to the class in 

question and some small unknown class.  Figure 6.4 shows an example of this 

situation. 

 

 

 

 

 

 

 

 

 

 
Figure 6.4 Potential superimposed with an unknown class.  The right pane shows a motor unit 
class template while the left pane shows a potential that should be a member of the class 
indicated by the left pane.  Unfortunately, it was superimposed with an unknown motor unit class 
and the algorithm let it go unclassified.  Since it has a small peak to peak value it is likely that this 
class was not clustered.  In order for a superposition to be correctly resolved, all of its constituent 
classes must have superposition-free potentials elsewhere in the record. 
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The right pane shows a global class template in the distal channel in the subject 

3 recording.  The left pane shows a potential that belongs to the global class in 

the right pane.  The left pane potential remained unclassified because it is 

superimposed with an unknown class.   

This superposition problem has a solution at the classification level of 

individual potentials.  The attenuation window described in section 4.3.7 has the 

ability of attenuating the unknown potentials so that a proper classification can be 

made.  If the unknown class has been attenuated enough, a correct classification 

could be made.  Unfortunately, it would not work for this example (Figure 6.5), 

but this method was effective elsewhere. 

Figure 6.5 Potential with unknown superposition after the application of an attenuation window.  
The red potential in the left pane is the original one while the blue one results after the original 
potential is multiplied by an attenuation window (section 4.3.6).  A proper classification still 
cannot be made because not enough of the unknown class potential has been attenuated. 



175 
 

6.3 Global Class Tracking 

 Algorithm-based classification of motor unit potentials was accurate over a 

few minutes, but to be useful for long term recordings, algorithm performance 

must remain reliable over time.  The motor unit template uniting routine could 

track an average of 13 different global classes per 24-hour recording. 

Unfortunately, the global class number can be erroneously increased if 

there are a frequent number of superpositions or a rapidly firing motor unit class.  

If an identical superposition occurs at least 3 times in a 3-minute EMG portion, 

then that superposition will be incorrectly assigned to a local class.  If this 

incorrect superposition class appears identically in at least five different 3-minute 

EMG portions, then it will be an erroneous global class as well.  The same 

situation can result if a motor unit class is firing so rapidly that multiple instances 

of the same motor unit class appear in the same segmented window (Figure 6.6). 
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In Figure 6.6, the top panes show the proximal and distal representations of 

overlaid potentials belonging to a given global class. In the bottom panes are 

more overlaid potentials where that global class was firing so rapidly that there 

was more than one occurrence of the same global class potential in the same 

segmented window. 

Factors that may contribute to the exclusion of potentials from the global 

class list include sampling errors, changes in template shapes, alterations in 

electrode properties and position, and periodic noise. These same factors can 

also reduce tracking performance and ultimately classification accuracy 
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Figure 6.6 Example of rapidly firing global class that is erroneously labeled as a new class.  The 
top panes show the distal and proximal representations of overlaid potentials of a global class.  
The bottom panes show overlaid potentials of the same class that is rapidly firing.  There is more 
than one occurrence of the same class in each of the distal and proximal segmented windows.  
These waveforms are repeatable, thereby causing the formation of a new class. 
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 Sampling error contributed to the inability to track some motor unit 

potential classes.  For example, global classes that had waveforms like those 

shown in Figure 6.7 were difficult to track. 

All potentials shown originate from the same motor unit, even though all look 

slightly different.  The individual data points that comprise the waveforms are 

also shown.  The “w” shape on the negative phase of the potential, in both 

channels, could not be consistently recorded by the data logger when sampling 

at 3.2 kHz.  Thus, one explanation for the varying shape could be sampling error 

– the logger could not sample fast enough to keep the “w” shapes in the same 

Figure 6.7 Hard to track potential.  The left hand side of the figure shows the distal channel 
waveform, while the right hand side shows the proximal channel waveform for 3 individual 
potentials occurring at times that differ by more than a few hours.  The “W” shape in these 
potential representations make it hard to track because either side of the “W” can be the most 
negative point in the potential at different times, even within the same 3-minute segment.  
Individual data points are also shown.  There are only about 6 or so data points in each negative 
peak. 
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relative positions over time so that they could be grouped correctly and classified.  

For this global class, the accuracy was 88%.  Alignment of these potentials was 

also problematic because either of the negative points on the “w” could be the 

most negative point in the potential at different times, even within the same 3-

minute segment of EMG.  If the alignment problem were circumvented by 

segmenting the potentials by aligning them in time, or in other words segmenting 

the same data points from both the distal and proximal channels, the effects of 

the low sampling rate could be reduced.  Another possibility is to align by the 

largest positive peak of a potential when the negative phase of that potential has 

a complex shape.  Unfortunately, this approach would increase complexity and 

could possibly make alignment problems worse.  The relative shapes of these 

potentials do change somewhat with time, however.  Thus the limits placed on 

the distance metrics to achieve accurate classification may still be met, making it 

difficult for the algorithm to recognize that these kinds of potentials belong to the 

same global class. 

 Tracking problems can also arise when changes in motor unit template 

shapes occur in one channel, but not the other (Figure 6.8). 
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Both the distal channel (left side) and proximal channel (right side) 

representations of 2 potentials occurred in the same 3-minute EMG portion.  

These potentials appear to belong to the same global class because of the 

striking similarity of the potentials in the distal channel.  In fact, this distal channel 

waveform shape is very unique and no other motor unit template shape is close 

to it over the entire 24-hour recording.  One possible explanation for this obvious 

change in the proximal channel representations of this class is that the red 

potential in Figure 6.8 is superimposed with some unknown class.  The unknown 

class could have a very small amplitude potential in the distal channel.  While no 

such potential was observed independently throughout this 24-hour recording, 
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Figure 6.8 Motor unit class template changes in one channel only.  The left side of the figure is 
the distal channel representation of each potential, while the right side of the figure is the 
proximal channel representation.  Both of these potentials occur within HR 17 MIN 6 of the 
subject 1 recording.  It appears that both of these potentials belong to the same motor unit 
because the distal channel representations are almost identical and there are no other similarly 
shaped motor unit template potentials throughout the entire recording.  The proximal channel 
representations could be different because a potential that has extremely low amplitude in the 
distal channel could be superimposed with the original waveform. 
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these motor units do fire sporadically and sometimes for short periods making it 

difficult to exclude this possible explanation.  When presented with these data, a 

person used to evaluating EMG signals would have to conclude that these two 

potentials are different.  For this reason, accuracy was only 60% for this global 

class due to a high incidence of false positives. One possible way to have an 

algorithm emulate this same process better, and thus to reduce the false positive 

rate, is to include some metric of potential amplitude as a criterion for acceptance 

of a global class.  The impact that such changes have on the template shape 

also depends on the frequency with which the changes occur. If infrequent, then 

the template shape, which is an average, will not change markedly. However if 

common, the average template shape will change, inducing tracking and 

classification errors. Thus, the motor unit potential classification algorithm is 

designed based on the idea that the template shape of a global class is stable 

from one 3-minute EMG portion to the next.  Instability, within limits, will cause 

classification and tracking errors.  

Changes in the shapes of global classes over a 24-hour recording may 

also result from alterations in the conductive properties of the electrodes or 

electrode movement. Electrodes were taped down onto the skin to ensure that 

they did not move. The maximal M-waves that were recorded before and after 

the 24 hour recording differed by an average of 10% for the distal EMG and by 

7% in the proximal channel. These data illustrate that electrodes do not 

necessarily behave like matched pairs over time and that the signals recorded by 

both channels can change by varying amounts over time.  Even so, only a 10 % 



181 
 

change in potential amplitude can result from electrode issues. Changes in global 

template amplitude that exceed this level must arise from other sources. 

Another source of error for tracking motor unit classes was time alignment 

for potentials of similar amplitude in both the distal and proximal channels.  In 

time alignment (section 4.3.7), the window of the channel that has the potential 

with the larger peak to peak value is retained, while the opposite channel is re-

segmented to have the same endpoints in time as the unchanged potential.  

When the peak to peak amplitudes of the distal and proximal channel 

representations are almost the same, the representation that is re-segmented 

can be that of either channel due to fluctuations in the amplitudes of both 

potential representations (Figure 6.9).   
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Figure 6.9 Time misalignment example.  Two different potentials of the same class are shown.  

The left panes represent the distal channel and the right panes represent the proximal channel.  
The top panes illustrate one case where the distal channel potential’s peak to peak value was 
greater than that of its proximal channel representation.  The bottom panes show a different 
potential of the same class whose peak to peak value of the proximal channel is greater than that of 
the distal channel representation. 
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This issue is one explanation for obtaining lower accuracy for tracking compared 

to classification of some global classes. 

Even though a different channel is chosen to do the time alignment, the 

relative timing between these potentials still remains constant and the resolution 

of superpositions is unaffected.  This can be a problem for the first stage of the 

motor unit template uniting procedure.  In this stage, all local templates over the 

entire recording are clustered.  This time alignment error can cause templates 

that are in fact identical to not be combined at all, and a trackable global class 

may not be found.  The peak to peak value fluctuations between channels most 

likely occur with motor unit classes with small amplitude templates like the one in 

Figure 6.9 and they are generally harder to follow in any case. 

In the third stage of the motor unit template uniting procedure, additional 

errors may have resulted from the use of nearest neighbor templates in global 

class tracking.  In order to verify if a particular global class was present in a 3-

minute EMG segment in which it was not originally found, the nearest neighbor 

template was employed.  If the nearest neighbor template happened to be 

incorrect, the wrong template would be utilized for comparisons.  This error would 

propagate through the entire motor unit template uniting procedure, generating 

more mistakes.  This results because the wrong template was utilized for 

comparisons.  This situation could possibly be remedied by using some type of 

weighted average involving known templates for given global classes.  This 

means the use of the direct output of the first stage of the motor unit template 

uniting procedure.  Unfortunately, this method may only reduce the number of 
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erroneous matches made (false positives) which would be useful in improving 

overall accuracy. It may not improve the correct percentage. 

Splitting error, or the error arising when a global class was not recombined 

during the third stage of the motor unit template uniting procedure, impacted the 

number of potentials missed by the algorithm.  This is shown by Figure 5.18 in 

the results.  Splitting error could result when local class templates were not 

mathematically similar enough to be grouped into the same global class in a 

given 3-minute EMG portion during the third stage of the motor unit template 

uniting procedure.  It could be remedied by lowering the thresholds for 

classification, but since the impact of this error was minimal (an average of only 

2.5%), any attempt to correct it may cause larger error.   

 

6.4 Comparison of Individual Classification and Tracking Performances 

 While most global classes were well classified and tracked, the 

classification performance of some global classes was found to be independent 

of the tracking performances achieved by the motor unit template uniting 

procedure in section 5.5.1.  These differences can occur because tracking and 

individual potential classification are different tasks performed using different 

methods.  

 The tracking procedure is also a task where potentials are clustered and 

classified, but in this case the clustered potentials are actually local class 

templates.  Stage 2 of the motor unit template uniting procedure performs the 

same function as the final unsorted analysis in individual potential classification, 
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but there are implementation differences.  In the final unsorted analysis distance 

metrics in addition to a superposition resolution algorithm are used to obtain the 

final set of classified potentials.  The aforementioned stage 2 operates in a much 

simpler fashion, using fuzzy membership function values from individual 

potentials to determine which local templates belong to which global class.  

Stage 3 of the motor unit template uniting procedure does not classify local 

templates as global classes, but actually classifies individual potentials as global 

classes through the similar use of fuzzy membership values.  Even though fuzzy 

membership values are used in both stages 2 and 3, their implementations are 

different, so their performances can likewise be different.  The stark differences 

between all three routines can explain how their performances are unrelated for 

some global classes. 

 

6.5 Custom Designed GUI Interface 

 The GUI tools for classification made manual analysis feasible, although it 

was still a very time consuming process.  It was more efficient than similar 

software produced by other authors.  McGill K, Lateva ZC and Marateb HR 

[2005] designed a similar automated classification program that classified multi-

unit recordings of able-bodied EMG recorded using needle and wire electrodes.  

The authors stated that 1 second of EMG from able-bodied individuals with 9-12 

active motor units required at most 20 minutes to manually classify.  If 

extrapolated, it would take them 240 hours to process 12 minutes of data.  Even 

though spontaneous EMG from people with SCI is different than multi-unit 
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voluntary EMG recordings, a six-fold time savings of manual classification time is 

substantial.  

 

6.6 Periodic Noise immunity 

 Figure 6.10 shows an example of cell phone noise.   

  

 

 

The performance of the algorithm is unaffected by the presence of recurring or 

periodic noise.  Periodic noise immunity is an important property of the 

automated motor unit classification algorithm because noise is treated just like a 

potential – it is clustered and grouped into its own independent class.  The 

treatment of noise as potentials is beneficial.  It can serve to “decontaminate” 

actual potentials if they form superpositions with the same type of noise that has 
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Figure 6.10 Clustered cell phone noise.  The automatic motor unit classification algorithm is 

immune to periodic noise.  It treats the noise just like it would potentials – by clustering them into 
independent classes.  In this way, the clustered noise can be used in superposition resolution to 
“decontaminate” actual potentials. 
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been clustered.  The algorithm cannot tell noise classes from actual global 

classes, so it is the job of the human operator during processing to tell the 

algorithm which classes are noise.  The immunity does not extend to sporadic or 

transient noise because this type of noise is unpredictable so it cannot be 

clustered as actual potentials are. 

 

6.7 Applications of 24-hour classification 

 Automatically classifying 24 hours of EMG data at the motor unit level 

opens the door to automatically classifying other EMG properties and different 

physiological data.  The high success rate of the automatic classification program 

proves that it is feasible to reliably identify motor unit potentials in long term 

surface EMG recordings that have an unknown number of classes.  The firing 

rate histograms computed by the automatic classification algorithm can be used 

to help identify theoretical sources of the spontaneous motor unit activity.  For 

example, the occasional firing of a motor unit at irregular rates make reflect 

activation of the motoneuron by synaptic noise [Matthews, 1996] whereas a train 

of motor unit potentials at a higher frequency may reflect the activation of a 

persistent inward current in the motoneuron [Heckman et al., 2005]. The 

automatic classification algorithm described in this research could also be 

applied in recognizing how motor unit activity changes during the time awake and 

the time asleep (Figure 5.25 in section 5.8), as well as before and after 

medication (Figure 5.26 in section 5.8).  In both situations, this could be 
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investigated by looking for firing rate changes or changes in the number of firings 

of motor units before and after the administration of drugs.   

Twenty-four-hour recordings have been done using various biosignals 

besides EMG, including neuronal activity [Mavoori et al., 2005], EEG [Velis D et 

al., 2007], blood oxygen saturation [O’Brien et al., 2000], and even signals from 

the taste receptors in the tongue [Shimatani et al., 2003].  The techniques used 

in this research could be applied to these other fields to classify data in long term 

recordings. 
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Chapter 7: Conclusion 

An algorithm was designed to classify motor unit potentials automatically 

and was tested on 24-hour EMG recordings from individuals with paralyzed 

thenar muscles due to spinal cord injury.  The classification algorithm performed 

well, achieving the classification accuracy performance of an expert classifier, or 

better, for more than 77% (n=41) of 53 global classes followed in four recordings.  

More than 94% (n=50) of the 53 global classes achieved the classification 

performance of a non-expert classifier. 

The multi-step algorithm was able to reliably track an average of about 13 

global classes over 24-hours (according to the expert results), accurately classify 

the potentials belonging to these classes, and determine their firing rates.  The 

comprehensive software package used to view the data provided the necessary 

tools to investigate the output of the motor unit classification algorithm and to rate 

its performance.   

The execution time of the automatic motor unit classification algorithm is 

up to three weeks.  The first pass of the algorithm to determine the appropriate 

segmentation threshold takes approximately a day to execute and the second 

pass in which clustering is accomplished can take several days.  The final 

classification pass may take upwards of a week or more to process.  This is 

assuming the processing is being done on a moderately fast computer (2.8 GHz 

single core processor) and it is left on until all processing has finished.  Although 

this execution time is long, the same procedure is unlikely to be accomplished 

manually (estimated time of two and a half years).  Another benefit of the 

188 
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automatic classification algorithm is that only minimal user intervention (half an 

hour at most) is required to set the globally tracked motor unit classes toward the 

end of the automatic classification procedure. 

Before attempting to enhance the classification algorithm, the amplitude 

resolution of the EMG recordings must be increased so that the largest potential 

completely fills the entire 0V - 4V input range.  Waveform stability would be 

increased with higher amplitude resolution, thus allowing smaller potentials to be 

more accurately classified and also more easily tracked over 24 hours.  Baseline 

noise could be increased with a higher gain and some input signals are likely to 

overdrive the input range of the logger.   Another possible way to improve 

classification performance would be to increase the sampling rate on the data 

logger.  Unfortunately, it is not possible to increase the sampling rate for both 

channels of the data logger due to hardware limitations, but it may be possible to 

record only one channel with a much higher sampling rate.  This would allow the 

peaks of potentials to be more faithfully represented, but would likely reduce the 

classification accuracy as well. 

The classification algorithm could be improved in a number of ways.  The 

superposition resolution routine needs the most improvement because it can 

impact the accuracy of all global classes.  It could be enhanced by using a 

combination of Euclidean and correlation metrics, or even by finding a more 

robust distance metric than the correlation coefficient.  An artificial neural network 

(ANN) approach may improve classification accuracy.  An ANN offers the 
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flexibility to correctly classify superimposed potentials by using function 

approximation and pattern recognition abilities. 

Among the globally tracked motor units, only 9 of 53 (15.0%) were always 

active throughout a 24-hour recording.  Several classes exhibited regular firing 

behavior at different times (n=13, 24.5%) possibly due to activation of persistent 

inward currents in the motoneurons. Most motor units fired irregularly and 

sporadically, behavior most likely due to synaptic noise.  There was activity 

during both the awake and sleep hours, but generally more of the activity 

occurred during the awake hours than during the sleep hours.  

In conclusion, the automatic motor unit classification algorithm performed 

well but could be improved by enhancing the superposition resolution routine.  

This algorithm is an excellent tool by which to determine the approximate firing 

behavior of involuntarily firing spontaneous motor units over 24-hours.  It also 

establishes one of the first long-term data classification software packages that 

could be applied towards the analysis of different biological signals.
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